In the wake of Richards Benton's "Keats and Zen" (published in Philosophy East and West (1966)), this paper sets out to examine Janet Frame's appropriation of Buddhist philosophy in Snowman, Snowman (1962). ...In the wake of Richards Benton's "Keats and Zen" (published in Philosophy East and West (1966)), this paper sets out to examine Janet Frame's appropriation of Buddhist philosophy in Snowman, Snowman (1962). The novella's allusions to a Buddhist-like epistemology, together with its subtle references to Scandinavian myths, however, have so far remained uncovered and are therefore best approached in the light of what has been called "the suppressed intertextuality in post-colonial writing". The author's intention in this paper is twofold: On the one hand, the author will suggest that post-colonial writers do not necessarily write against the Western canon and that maintaining the contrary amounts to vindicating the centrality of imperial texts in the contemporary literary scene--an endeavour which is hardly post-colonial. On the other hand, the author will go some way towards shifting eastward the core of Frame's ontology by suggesting that her poetics is anchored not only in Western thinking, but also, perhaps more importantly so, in Eastern philosophy. The author's primary impulse, however, in examining the interplay between canonical and peripheral intertextualities, is to illuminate in fundamental fashion the haunting beauty of the writer's universe and the lyricism of Snowman, Snowman.展开更多
On a dry land where grass turns yellow and droopy,the strong bull is served as a nice bite of beef for an even stronger predator,an attacking lion. Yes,that's the principle of Darwin's theory-the survival of t...On a dry land where grass turns yellow and droopy,the strong bull is served as a nice bite of beef for an even stronger predator,an attacking lion. Yes,that's the principle of Darwin's theory-the survival of the fittest.展开更多
In this paper, an algorithm for computing the Janet bases of linear differential equations is described, which is the differential analogue of the algorithm JanetBasis improved by Gerdt. An implementation of the algor...In this paper, an algorithm for computing the Janet bases of linear differential equations is described, which is the differential analogue of the algorithm JanetBasis improved by Gerdt. An implementation of the algorithm in Maple is given. The implemented algorithm includes some subalgorithms: Janet division, Pommaret division, the judgement of involutive divisor and reducible, the judgement of conventional divisor and reducible, involutive normal form and conventional normal form, involutive autoreduction and conventional autoreduction, PJ-autoreduction and so on. As an application, the Janet Bases of the determining system of classical Lie symmetries of some partial differential equations are obtained using our package.展开更多
On October 9,2006,a calligraphy,painting and photo exhibition "Pearl S.Buck in Zhenjiang" was held in Perkasie,a beautiful small city in Pennsylvania,the U.S.,where the headquarters of Pearl S.Buck Internati...On October 9,2006,a calligraphy,painting and photo exhibition "Pearl S.Buck in Zhenjiang" was held in Perkasie,a beautiful small city in Pennsylvania,the U.S.,where the headquarters of Pearl S.Buck International(PSBI) located.The exhibits on display vividly showed the natural conditions,social customs and new development of Pearl Buck’s Chinese hometown,and the friendly exchanges between Zhenjiang and its US friendship city and PSBI.展开更多
The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations...The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.展开更多
译者点评:本文是美国食品药品管理局(FDA)药品审评和研究中心(Center for Drug Evaluation and Research,CDER)主任杰妮特·伍德科克(Janet Woodcock)医生2016年1月28日在美国国会健康教育劳工和劳保委员会(Senate Committe...译者点评:本文是美国食品药品管理局(FDA)药品审评和研究中心(Center for Drug Evaluation and Research,CDER)主任杰妮特·伍德科克(Janet Woodcock)医生2016年1月28日在美国国会健康教育劳工和劳保委员会(Senate Committee on Health,Education,Labor,and Pensions)就2012年《仿制药企业付费修正法案》(GDUFA)实施3年来进展情况的汇报。展开更多
A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well know...A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure, we provide for the first time all the CC for K in an intrinsic way, showing that they only depend on the underlying Killing algebra and that the role played by the Spencer operator is crucial. We get K < S < M with 2 < 4 < 10 for the Killing algebras and explain why the formal search of the CC for M, S or K are strikingly different, even if each Spencer sequence is isomorphic to the tensor product of the Poincaré sequence for the exterior derivative by the corresponding Lie algebra.展开更多
The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ...The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.展开更多
文摘In the wake of Richards Benton's "Keats and Zen" (published in Philosophy East and West (1966)), this paper sets out to examine Janet Frame's appropriation of Buddhist philosophy in Snowman, Snowman (1962). The novella's allusions to a Buddhist-like epistemology, together with its subtle references to Scandinavian myths, however, have so far remained uncovered and are therefore best approached in the light of what has been called "the suppressed intertextuality in post-colonial writing". The author's intention in this paper is twofold: On the one hand, the author will suggest that post-colonial writers do not necessarily write against the Western canon and that maintaining the contrary amounts to vindicating the centrality of imperial texts in the contemporary literary scene--an endeavour which is hardly post-colonial. On the other hand, the author will go some way towards shifting eastward the core of Frame's ontology by suggesting that her poetics is anchored not only in Western thinking, but also, perhaps more importantly so, in Eastern philosophy. The author's primary impulse, however, in examining the interplay between canonical and peripheral intertextualities, is to illuminate in fundamental fashion the haunting beauty of the writer's universe and the lyricism of Snowman, Snowman.
文摘On a dry land where grass turns yellow and droopy,the strong bull is served as a nice bite of beef for an even stronger predator,an attacking lion. Yes,that's the principle of Darwin's theory-the survival of the fittest.
文摘In this paper, an algorithm for computing the Janet bases of linear differential equations is described, which is the differential analogue of the algorithm JanetBasis improved by Gerdt. An implementation of the algorithm in Maple is given. The implemented algorithm includes some subalgorithms: Janet division, Pommaret division, the judgement of involutive divisor and reducible, the judgement of conventional divisor and reducible, involutive normal form and conventional normal form, involutive autoreduction and conventional autoreduction, PJ-autoreduction and so on. As an application, the Janet Bases of the determining system of classical Lie symmetries of some partial differential equations are obtained using our package.
文摘On October 9,2006,a calligraphy,painting and photo exhibition "Pearl S.Buck in Zhenjiang" was held in Perkasie,a beautiful small city in Pennsylvania,the U.S.,where the headquarters of Pearl S.Buck International(PSBI) located.The exhibits on display vividly showed the natural conditions,social customs and new development of Pearl Buck’s Chinese hometown,and the friendly exchanges between Zhenjiang and its US friendship city and PSBI.
文摘The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.
文摘译者点评:本文是美国食品药品管理局(FDA)药品审评和研究中心(Center for Drug Evaluation and Research,CDER)主任杰妮特·伍德科克(Janet Woodcock)医生2016年1月28日在美国国会健康教育劳工和劳保委员会(Senate Committee on Health,Education,Labor,and Pensions)就2012年《仿制药企业付费修正法案》(GDUFA)实施3年来进展情况的汇报。
文摘A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure, we provide for the first time all the CC for K in an intrinsic way, showing that they only depend on the underlying Killing algebra and that the role played by the Spencer operator is crucial. We get K < S < M with 2 < 4 < 10 for the Killing algebras and explain why the formal search of the CC for M, S or K are strikingly different, even if each Spencer sequence is isomorphic to the tensor product of the Poincaré sequence for the exterior derivative by the corresponding Lie algebra.
文摘The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.