The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under...The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.展开更多
Lacking labeled examples of working numerical strategies,adapting an iterative solver to accommodate a numerical issue,e.g.,density discontinuities in the pressure Poisson equation,is non-trivial and usually involves ...Lacking labeled examples of working numerical strategies,adapting an iterative solver to accommodate a numerical issue,e.g.,density discontinuities in the pressure Poisson equation,is non-trivial and usually involves a lot of trial and error.Here,we resort to evolutionary neural network.A evolutionary neural network observes the outcome of an action and adapts its strategy accordingly.The process requires no labeled data but only a measure of a network’s performance at a task.Applying neuro-evolution and adapting the Jacobi iterative method for the pressure Poisson equation with density discontinuities,we show that the adapted Jacobi method is able to accommodate density discontinuities.展开更多
This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular con...This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the efornvalues of the block Jacobi iteration matrir associated with A are real. In the last section, we compare the MEJ with other known methods.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fracti...The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.展开更多
The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gau...The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.展开更多
By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the...By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.展开更多
The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The propo...A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.展开更多
This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergenc...This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.展开更多
In this paper, we study an efficient higher order numerical method to timefractional partial differential equations with temporal Caputo derivative. A collocation method based on shifted generalized Jacobi functions i...In this paper, we study an efficient higher order numerical method to timefractional partial differential equations with temporal Caputo derivative. A collocation method based on shifted generalized Jacobi functions is taken for approximating the solution of the given time-fractional partial differential equation in time and a shifted Chebyshev collocation method based on operational matrix in space. The derived numerical solution can approximate the non-smooth solution in time of given equations well. Some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.
基金Shi acknowledges financial support from the National Natural Science Foundation of China(Grant 91752202).
文摘Lacking labeled examples of working numerical strategies,adapting an iterative solver to accommodate a numerical issue,e.g.,density discontinuities in the pressure Poisson equation,is non-trivial and usually involves a lot of trial and error.Here,we resort to evolutionary neural network.A evolutionary neural network observes the outcome of an action and adapts its strategy accordingly.The process requires no labeled data but only a measure of a network’s performance at a task.Applying neuro-evolution and adapting the Jacobi iterative method for the pressure Poisson equation with density discontinuities,we show that the adapted Jacobi method is able to accommodate density discontinuities.
文摘This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the efornvalues of the block Jacobi iteration matrir associated with A are real. In the last section, we compare the MEJ with other known methods.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.
文摘By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.
文摘The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China(No.10771142)Science and Technology Commission of Shanghai Municipality(No.75105118)+2 种基金Shanghai Leading Academic Discipline Projects(Nos.T0401 and J50101)Fund for E-institutes of Universities in Shanghai(No.E03004)and Innovative Foundation of Shanghai University(No.A.10-0101-07-408)
文摘A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.
文摘This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1140138011671166)
文摘In this paper, we study an efficient higher order numerical method to timefractional partial differential equations with temporal Caputo derivative. A collocation method based on shifted generalized Jacobi functions is taken for approximating the solution of the given time-fractional partial differential equation in time and a shifted Chebyshev collocation method based on operational matrix in space. The derived numerical solution can approximate the non-smooth solution in time of given equations well. Some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.