In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff t...In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff topology. As an application we also prove a pinching result which states that a Ricci flat manifold is flat under certain conditions.展开更多
This paper provides a new approach to study the solutions of a class of generalized Jazobi equations associated with the linearization of certain singular flows on Riemannian manifolds with dimension n + 1. A new cla...This paper provides a new approach to study the solutions of a class of generalized Jazobi equations associated with the linearization of certain singular flows on Riemannian manifolds with dimension n + 1. A new class of generalized differential operators is defined. We investigate the kernel of the corresponding maximal operators by applying operator theory. It is shown that all nontrivial solutions to the generalized Jacobi equation are hyperbolic, in which there are n dimension solutions with exponential-decaying amplitude.展开更多
基金Supported by National Natural Science Foundation of China (19971081)
文摘In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff topology. As an application we also prove a pinching result which states that a Ricci flat manifold is flat under certain conditions.
基金supported by the National Natural Science Foundation of USA(NSF-DMS 0901448)
文摘This paper provides a new approach to study the solutions of a class of generalized Jazobi equations associated with the linearization of certain singular flows on Riemannian manifolds with dimension n + 1. A new class of generalized differential operators is defined. We investigate the kernel of the corresponding maximal operators by applying operator theory. It is shown that all nontrivial solutions to the generalized Jacobi equation are hyperbolic, in which there are n dimension solutions with exponential-decaying amplitude.