针对联合概率数据关联(JPDA,Joint Probabilistic Data Association)算法关联概率计算过于复杂,无法适应复杂电磁环境下多目标实时跟踪的需求,提出了一种改进的JPDA算法(MJPDA)。首先,考虑多重因素重新定义关联矩阵,并计算关联概率;其次...针对联合概率数据关联(JPDA,Joint Probabilistic Data Association)算法关联概率计算过于复杂,无法适应复杂电磁环境下多目标实时跟踪的需求,提出了一种改进的JPDA算法(MJPDA)。首先,考虑多重因素重新定义关联矩阵,并计算关联概率;其次,对密集杂波下公共量测的关联概率进行修正,引入马氏距离对公共量测进行二次加权,同时考虑公共与非公共量测数目的影响,最后计算修正关联概率。该算法规避了确认矩阵的拆分,有效解决了JPDA算法计算量随杂波密度增加呈指数级增长的问题。通过理论分析和蒙特卡罗仿真实验结果表明,在密集杂波环境下,改进算法具有良好的跟踪性能和较小的计算量,显著提升了算法的实时性。展开更多
为了降低联合概率数据关联(joint probabilispic data association,JPDA)算法的计算复杂度,解决跟踪临近目标时出现的航迹合并问题,基于量测自适应消除方法,提出了一种改进JPDA算法.该算法首先通过Cheap JPDA算法计算互联概率,降低算法...为了降低联合概率数据关联(joint probabilispic data association,JPDA)算法的计算复杂度,解决跟踪临近目标时出现的航迹合并问题,基于量测自适应消除方法,提出了一种改进JPDA算法.该算法首先通过Cheap JPDA算法计算互联概率,降低算法计算量;其次对聚概率矩阵加以阈值处理,通过重建确认矩阵,进一步优化算法复杂度;最后采用自适应消除方法,去掉聚概率矩阵中易引起错误关联的量测,减小JPDA算法在关联临近目标时的误差.仿真实验结果表明:相较于JPDA算法及Scaled JPDA(SJPDA)算法,本文算法在保证跟踪精度的前提下,降低了算法复杂度,提高了时效性;在跟踪临近目标及交叉目标时,改进算法能避免航迹合并现象及跟错目标情况的发生.展开更多
在恒虚警条件下,针对传统的航海雷达模拟器目标跟踪采用的基于不敏卡尔曼滤波的联合概率数据互联算法(JPDA-UKF)发散、复杂度高和实时性差的问题,提出了一种利用运动补偿的笛卡尔坐标下改进的JPDA-UKF滤波方法。该算法引入相邻周期回波...在恒虚警条件下,针对传统的航海雷达模拟器目标跟踪采用的基于不敏卡尔曼滤波的联合概率数据互联算法(JPDA-UKF)发散、复杂度高和实时性差的问题,提出了一种利用运动补偿的笛卡尔坐标下改进的JPDA-UKF滤波方法。该算法引入相邻周期回波间运动补偿提取的目标量测可信度矩阵,限制进入跟踪门相交区域中的虚假量测数量,并将软跟踪门技术应用于滑窗逻辑法实现航迹管理。仿真结果表明,所提方法径向速度误差比传统的JPDA-UKF算法与自适应的α-β滤波算法分别降低10%和20%,目标获得稳定航迹后径向速度归一化均方根误差(RMSE)比上述两种方法分别具有约10d B和15 d B的性能优势,算法的复杂度符合真实雷达的边扫描边跟踪的实时处理。展开更多
为简化联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)的计算复杂度,增强JPDA算法的实时性,设计了一种新的JPDA简化算法。首先根据目标航迹与量测之间的关联规则,定义了一种新的计算关联概率的方法,之后分析公共量...为简化联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)的计算复杂度,增强JPDA算法的实时性,设计了一种新的JPDA简化算法。首先根据目标航迹与量测之间的关联规则,定义了一种新的计算关联概率的方法,之后分析公共量测对目标的影响,引入公共量测影响因子修正关联概率。该算法不用进行确认矩阵拆分,有效解决了在密集杂波环境下因回波密度增加而造成的计算上的组合爆炸问题。仿真结果表明,简化的JPDA算法能够在保持对目标有效跟踪的情况下,大大缩短计算时间,提高算法的实时性。展开更多
文摘针对联合概率数据关联(JPDA,Joint Probabilistic Data Association)算法关联概率计算过于复杂,无法适应复杂电磁环境下多目标实时跟踪的需求,提出了一种改进的JPDA算法(MJPDA)。首先,考虑多重因素重新定义关联矩阵,并计算关联概率;其次,对密集杂波下公共量测的关联概率进行修正,引入马氏距离对公共量测进行二次加权,同时考虑公共与非公共量测数目的影响,最后计算修正关联概率。该算法规避了确认矩阵的拆分,有效解决了JPDA算法计算量随杂波密度增加呈指数级增长的问题。通过理论分析和蒙特卡罗仿真实验结果表明,在密集杂波环境下,改进算法具有良好的跟踪性能和较小的计算量,显著提升了算法的实时性。
文摘在恒虚警条件下,针对传统的航海雷达模拟器目标跟踪采用的基于不敏卡尔曼滤波的联合概率数据互联算法(JPDA-UKF)发散、复杂度高和实时性差的问题,提出了一种利用运动补偿的笛卡尔坐标下改进的JPDA-UKF滤波方法。该算法引入相邻周期回波间运动补偿提取的目标量测可信度矩阵,限制进入跟踪门相交区域中的虚假量测数量,并将软跟踪门技术应用于滑窗逻辑法实现航迹管理。仿真结果表明,所提方法径向速度误差比传统的JPDA-UKF算法与自适应的α-β滤波算法分别降低10%和20%,目标获得稳定航迹后径向速度归一化均方根误差(RMSE)比上述两种方法分别具有约10d B和15 d B的性能优势,算法的复杂度符合真实雷达的边扫描边跟踪的实时处理。
文摘为简化联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)的计算复杂度,增强JPDA算法的实时性,设计了一种新的JPDA简化算法。首先根据目标航迹与量测之间的关联规则,定义了一种新的计算关联概率的方法,之后分析公共量测对目标的影响,引入公共量测影响因子修正关联概率。该算法不用进行确认矩阵拆分,有效解决了在密集杂波环境下因回波密度增加而造成的计算上的组合爆炸问题。仿真结果表明,简化的JPDA算法能够在保持对目标有效跟踪的情况下,大大缩短计算时间,提高算法的实时性。