In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conven...In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination.展开更多
In the agriculture field,one of the recent research topics is recognition and classification of diseases from the leaf images of a plant.The recognition of agricultural plant diseases by utilizing the image processing...In the agriculture field,one of the recent research topics is recognition and classification of diseases from the leaf images of a plant.The recognition of agricultural plant diseases by utilizing the image processing techniques will minimize the reliance on the farmers to protect the agricultural products.In this paper,Recognition and Classification of Paddy Leaf Diseases using Optimized Deep Neural Network with Jaya Algorithm is proposed.For the image acquisition the images of rice plant leaves are directly captured from the farm field for normal,bacterial blight,brown spot,sheath rot and blast diseases.In pre-processing,for the background removal the RGB images are converted into HSV images and based on the hue and saturation parts binary images are extracted to split the diseased and non-diseased part.For the segmentation of diseased portion,normal portion and background a clustering method is used.Classification of diseases is carried out by using Optimized Deep Neural Network with Jaya Optimization Algorithm(DNN_JOA).In order to precise the stability of this approach a feedback loop is generated in the post processing step.The experimental results are evaluated and compared with ANN,DAE and DNN.The proposed method achieved high accuracy of 98.9%for the blast affected,95.78%for the bacterial blight,92%for the sheath rot,94%for the brown spot and 90.57%for the normal leaf image.展开更多
Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based o...Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.展开更多
文摘In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination.
文摘In the agriculture field,one of the recent research topics is recognition and classification of diseases from the leaf images of a plant.The recognition of agricultural plant diseases by utilizing the image processing techniques will minimize the reliance on the farmers to protect the agricultural products.In this paper,Recognition and Classification of Paddy Leaf Diseases using Optimized Deep Neural Network with Jaya Algorithm is proposed.For the image acquisition the images of rice plant leaves are directly captured from the farm field for normal,bacterial blight,brown spot,sheath rot and blast diseases.In pre-processing,for the background removal the RGB images are converted into HSV images and based on the hue and saturation parts binary images are extracted to split the diseased and non-diseased part.For the segmentation of diseased portion,normal portion and background a clustering method is used.Classification of diseases is carried out by using Optimized Deep Neural Network with Jaya Optimization Algorithm(DNN_JOA).In order to precise the stability of this approach a feedback loop is generated in the post processing step.The experimental results are evaluated and compared with ANN,DAE and DNN.The proposed method achieved high accuracy of 98.9%for the blast affected,95.78%for the bacterial blight,92%for the sheath rot,94%for the brown spot and 90.57%for the normal leaf image.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang Higher Education Institutions,grant number 2023QN131National Innovation Training Program Project in China,grant number 202410451009.
文摘Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.