To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this ...To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this paper,the initial sedimentary facies maps are obtained by integrated geological analysis from well data,seismic attributes,and deterministic inversion results.Then the fi rst iteration of facies-constrained seismic inversion is performed.According to that result and other data such as geological information,the facies distribution can be updated using cluster analysis.The next round of facies-constrained inversion can then be performed.This process will be repeated until the facies inconsistency or error before and after the inversion is minimized.It forms a new iterative facies-constrained seismic inversion technique.Compared with conventional facies-constrained seismic inversion,the proposed method not only can reduces the non-uniqueness of seismic inversion results but also can improves its resolution.As a consequence,the sedimentary facies will be more consistent with the geology.A practical application demonstrated that the superposition relationship of sand bodies could be better delineated based on this new seismic inversion technique.The result highly increases the understanding of reservoir connectivity and its accuracy,which can be used to guide further development.展开更多
Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subs...Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subsequently for an efficient design.Multiple analysis methods are known and available to gain insight into existing models.In this contribution,selected methods from various fields are applied to a real world mechanical engineering example of a currently developed clinching process.The selection of introduced methods comprises techniques of machine learning and data mining,in which the utilization is aiming at a decreased numerical effort.The methods of choice are basically discussed and references are given as well as challenges in the context of meta-modelling and sensitivities are shown.An incremental knowledge gain is provided by a step-bystep application of the numerical methods,whereas resulting consequences for further applications are highlighted.Furthermore,a visualisation method aiming at an easy design guideline is proposed.These visual decision maps incorporate the uncertainty coming from the reduction of dimensionality and can be applied in early stage of design.展开更多
A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary syste...A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.展开更多
基金This research is supported by the Joint Funds of the National Natural Science Foundation of China(No.U20B2016)the National Natural Science Foundation of China(No.41874167)the National Natural Science Foundation of China(No.41904130).
文摘To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this paper,the initial sedimentary facies maps are obtained by integrated geological analysis from well data,seismic attributes,and deterministic inversion results.Then the fi rst iteration of facies-constrained seismic inversion is performed.According to that result and other data such as geological information,the facies distribution can be updated using cluster analysis.The next round of facies-constrained inversion can then be performed.This process will be repeated until the facies inconsistency or error before and after the inversion is minimized.It forms a new iterative facies-constrained seismic inversion technique.Compared with conventional facies-constrained seismic inversion,the proposed method not only can reduces the non-uniqueness of seismic inversion results but also can improves its resolution.As a consequence,the sedimentary facies will be more consistent with the geology.A practical application demonstrated that the superposition relationship of sand bodies could be better delineated based on this new seismic inversion technique.The result highly increases the understanding of reservoir connectivity and its accuracy,which can be used to guide further development.
文摘Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subsequently for an efficient design.Multiple analysis methods are known and available to gain insight into existing models.In this contribution,selected methods from various fields are applied to a real world mechanical engineering example of a currently developed clinching process.The selection of introduced methods comprises techniques of machine learning and data mining,in which the utilization is aiming at a decreased numerical effort.The methods of choice are basically discussed and references are given as well as challenges in the context of meta-modelling and sensitivities are shown.An incremental knowledge gain is provided by a step-bystep application of the numerical methods,whereas resulting consequences for further applications are highlighted.Furthermore,a visualisation method aiming at an easy design guideline is proposed.These visual decision maps incorporate the uncertainty coming from the reduction of dimensionality and can be applied in early stage of design.
基金supported by the National Natural Science Foundation of China(Grant No.11602012)the 111 Project(Grant No.B07009)+1 种基金the Defense Industrial Technology Development Program(Grant No.JCKY2016601B001)and the China Postdoctoral Science Foundation(Grant No.2016M591038)
文摘A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.