A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To...In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,展开更多
This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetit...This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetitive processes is used to develop formulas for gain matrices design, together with convergent conditions in terms of linear matrix inequalities. An extension to deal with model uncertainty of the polytopic or norm bounded form is also developed and an illustrative example is given.展开更多
This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. Th...This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. The propgsed approach works well with input constraints provided that the desired control input with respect to the desired trajectory is within the samratiorl bound. The tracking error convergence is established with rigorous mathe- matical analysis. Simulation results .are provided to showthe effectiveness, of the proposed approach.展开更多
Batch process is a typical multi-phase process. Due to the interaction between the phases of the batch process, high precision control in a single phase cannot guarantee high precision control of the whole batch proce...Batch process is a typical multi-phase process. Due to the interaction between the phases of the batch process, high precision control in a single phase cannot guarantee high precision control of the whole batch process. In order to solve this problem, the guaranteed cost iterative learning control(ILC) of multi-phase batch processes is studied in this paper. Firstly, through introducing the output error, the state error and the extended information, the multi-phase batch process is transformed into an equivalent 2D switched system which has different dimensions. In addition, under the measurable condition, the guaranteed cost iterative learning control law with extended information is designed. The proposed control law ensures not only the stability of the system but also the optimal control performance. Next, in order to study the stability of the system and the minimum running time under the condition of stable running, the multi-Lyapunov function method is used. By means of the average dwell time method, the sufficient conditions ensuring system to be exponentially stable are given in the form of linear matrix inequality(LMI). Finally, the injection molding process is taken as an example to make simulation, which shows the feasibility and effectiveness of the proposed method.展开更多
In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC)...In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
An optimal iterative learning control (ILC) strategy of improving endpoint products in semi-batch processes is presented by combining a neural network model. Control affine feed-forward neural network (CAFNN) is p...An optimal iterative learning control (ILC) strategy of improving endpoint products in semi-batch processes is presented by combining a neural network model. Control affine feed-forward neural network (CAFNN) is proposed to build a model of semi-batch process. The main advantage of CAFNN is to obtain analytically its gradient of endpoint products with respect to input. Therefore, an optimal ILC law with direct error feedback is obtained explicitly, and the convergence of tracking error can be analyzed theoretically. It has been proved that the tracking errors may converge to small values. The proposed modeling and control strategy is illustrated on a simulated isothermal semi-batch reactor, and the results show that the endpoint products can be improved gradually from batch to batch.展开更多
Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In th...Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In this paper, a run-to-run product quality control based on iterative learning optimization control is developed. Moreover, a rigorous theorem is proposed and proven in this paper, which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero. In this paper, a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered, and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fau...This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.展开更多
Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to contr...Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金This work was supported by the National Natural Science Foundation of China (No. 60274055)
文摘In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,
基金supported by National Natural Science Foundation of China(Nos.61273070 and 61203092)111 project(No.B12018)
文摘This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetitive processes is used to develop formulas for gain matrices design, together with convergent conditions in terms of linear matrix inequalities. An extension to deal with model uncertainty of the polytopic or norm bounded form is also developed and an illustrative example is given.
基金Supported by the National Natural Science Foundation of China (60974040, 61120106009), the Research Award Foundation for the Excellent Youth Scientists of Shandong Province of China (BS2011DX010), and the High School Science & Technol- ogy Fund Planning Project of Shandong Province of China (J 10LG32).
文摘This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. The propgsed approach works well with input constraints provided that the desired control input with respect to the desired trajectory is within the samratiorl bound. The tracking error convergence is established with rigorous mathe- matical analysis. Simulation results .are provided to showthe effectiveness, of the proposed approach.
基金the National Natural Science Foundation of China(Nos.61773190 and 61433005)the Guangdong Innovative and Entrepreneurial Research Team Program(No.2013G076)
文摘Batch process is a typical multi-phase process. Due to the interaction between the phases of the batch process, high precision control in a single phase cannot guarantee high precision control of the whole batch process. In order to solve this problem, the guaranteed cost iterative learning control(ILC) of multi-phase batch processes is studied in this paper. Firstly, through introducing the output error, the state error and the extended information, the multi-phase batch process is transformed into an equivalent 2D switched system which has different dimensions. In addition, under the measurable condition, the guaranteed cost iterative learning control law with extended information is designed. The proposed control law ensures not only the stability of the system but also the optimal control performance. Next, in order to study the stability of the system and the minimum running time under the condition of stable running, the multi-Lyapunov function method is used. By means of the average dwell time method, the sufficient conditions ensuring system to be exponentially stable are given in the form of linear matrix inequality(LMI). Finally, the injection molding process is taken as an example to make simulation, which shows the feasibility and effectiveness of the proposed method.
文摘In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60404012, 60874049)the National High-Tech Research & Development Program of China (Grant No. 2007AA041402)+1 种基金the New Star of Science and Technology of Beijing City (Grant No. 2006A62)the IBM China Research Lab 2008 UR-Program
文摘An optimal iterative learning control (ILC) strategy of improving endpoint products in semi-batch processes is presented by combining a neural network model. Control affine feed-forward neural network (CAFNN) is proposed to build a model of semi-batch process. The main advantage of CAFNN is to obtain analytically its gradient of endpoint products with respect to input. Therefore, an optimal ILC law with direct error feedback is obtained explicitly, and the convergence of tracking error can be analyzed theoretically. It has been proved that the tracking errors may converge to small values. The proposed modeling and control strategy is illustrated on a simulated isothermal semi-batch reactor, and the results show that the endpoint products can be improved gradually from batch to batch.
基金supported by the Science Foundation of Shanghai Municipal Education Commission (Grant No.09Y208)the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant Nos.08DZ2272400, 09DZ2273400)the "11th Five-Year Plan" 211 Construction Project of Shanghai University
文摘Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In this paper, a run-to-run product quality control based on iterative learning optimization control is developed. Moreover, a rigorous theorem is proposed and proven in this paper, which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero. In this paper, a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered, and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金supported by the Key Project of National Natural Science Foundation of China(61933013)Ningbo 13th Five-year Marine Economic Innovation and Development Demonstration Project(NBH Y-2017-Z1)。
文摘This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.
基金supported by National Natural Science Foundation of China(61403254,61374039,61203143)Shanghai Pujiang Program(13PJ1406300)+2 种基金Natural Science Foundation of Shanghai City(13ZR1428500)Innovation Program of Shanghai Municipal Education Commission(14YZ083)Hujiang Foundation of China(C14002,B1402/D1402)
基金The authors thank the MOE AcRF Grant in Singapore for financial support of the projects on Precision Healthcare Development,Manufacturing and Supply Chain Optimization(Grant No.R-279-000-513-133)Advanced Process Control and Machine Learning Methods for Enhanced Continuous Manufacturing of Pharmaceutical Products(Grant No.R-279-000-541-114).
文摘Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.