期刊文献+
共找到2,205篇文章
< 1 2 111 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
An Iterative Tuning Method for Feedforward Control of Parallel Manipulators Considering Nonlinear Dynamics
2
作者 Xiaojian Wang Jun Wu 《Chinese Journal of Mechanical Engineering》 2025年第1期295-305,共11页
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t... Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators. 展开更多
关键词 Parallel manipulator Dynamic model Feedforward control iterative learning control Parameter design
在线阅读 下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment 被引量:2
3
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
在线阅读 下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking 被引量:1
4
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
在线阅读 下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
5
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
在线阅读 下载PDF
Stability of Iterative Learning Control with Data Dropouts via Asynchronous Dynamical System 被引量:18
6
作者 Xu-Hui Bu Zhong-Sheng Hou 《International Journal of Automation and computing》 EI 2011年第1期29-36,共8页
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr... In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations. 展开更多
关键词 iterative learning control (ILC) networked control systems (NCSs) data dropouts asynchronous dynamical system robustness.
在线阅读 下载PDF
PD-type iterative learning control for nonlinear time-delay system with external disturbance 被引量:12
7
作者 Zhang Baolin Tang Gongyou Zheng Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期600-605,共6页
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin... The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme. 展开更多
关键词 time-delay system nonlinear system iterative learning control CONVERGENCE external disturbance.
在线阅读 下载PDF
Iterative Learning Control for Discrete-time Stochastic Systems with Quantized Information 被引量:10
8
作者 Dong Shen Yun Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期59-67,共9页
An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to gua... An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to guarantee an adaptive improvement in tracking performance. A decreasing learning gain is introduced into the algorithm to suppress the effects of stochastic noises and quantization errors. The input sequence is proved to converge strictly to the optimal input under the given index. Illustrative simulations are given to verify the theoretical analysis. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS Digital control systems Discrete time control systems iterative methods Learning algorithms Stochastic control systems Stochastic systems
在线阅读 下载PDF
Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction 被引量:17
9
作者 Dan Li Jun-Min Li Department of Mathematics,Xidian University,Xi an 710071,China 《International Journal of Automation and computing》 EI 2012年第6期578-586,共9页
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati... This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method. 展开更多
关键词 Nonlinearly time-varying parameterized systems unknown time-varying delay unknown control direction composite energy function adaptive iterative learning control.
原文传递
Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press 被引量:18
10
作者 郑建明 赵升吨 魏树国 《Journal of Central South University》 SCIE EI CAS 2010年第2期316-322,共7页
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no... A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only. 展开更多
关键词 hydraulic press volume control electro-hydraulic servo iterative learning control fuzzy control
在线阅读 下载PDF
Iterative Learning Control With Incomplete Information:A Survey 被引量:15
11
作者 Dong Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期885-901,共17页
This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and ac... This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and active types,can cause data loss or fragment due to various factors.Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection,storage,transmission,and processing,such as data dropouts,delays,disordering,and limited transmission bandwidth.Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied,such as sampling and quantization.This survey emphasizes two aspects:the first one is how to guarantee good learning performance and tracking performance with passive incomplete data,and the second is how to balance the control performance index and data demand by active means.The promising research directions along this topic are also addressed,where data robustness is highly emphasized.This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance,quantitatively,and promote further developments of ILC theory. 展开更多
关键词 Data dropout data robustness incomplete information iterative learning control(ILC) quantized control sampled control varying lengths
在线阅读 下载PDF
Robust iterative learning control for nonlinear systems with measurement disturbances 被引量:6
12
作者 Xuhui BuI FashanYu +1 位作者 Zhongsheng Hou Haizhu Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期906-913,共8页
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi... The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example. 展开更多
关键词 iterative learning control (ILC) nonlinear system mea-surement disturbance iteration-varying disturbance.
在线阅读 下载PDF
Iterative Learning Control Algorithm with a Fixed Step 被引量:4
13
作者 WANG Yan NIU Jianjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期669-675,共7页
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e... Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms. 展开更多
关键词 iterative learning control fixed step time variant system simulating study robot control
在线阅读 下载PDF
A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems 被引量:7
14
作者 Wei Zhou Miao Yu De-Qing Huang 《International Journal of Automation and computing》 EI CSCD 2015年第3期330-336,共7页
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the... In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking. 展开更多
关键词 iterative learning control high-order internal model discrete linear time-varying systems iteration-varying desired tra-jectory
原文传递
Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method 被引量:12
15
作者 Jinrui REN Quan QUAN +1 位作者 Cunjia LIU Kai-Yuan CAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1016-1025,共10页
Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvan... Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR. 展开更多
关键词 Additive state decomposition Adjoint operator Docking control iterative learning control Probe-drogue refueling Stable inversion
原文传递
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays 被引量:12
16
作者 Wei-Sheng Chen Rui-Hong Li Jing Li 《International Journal of Automation and computing》 EI 2010年第4期438-446,共9页
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (... An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper. 展开更多
关键词 Adaptive iterative learning control (AILC) nonlinearly parameterized systems time-varying delays Lyapunov- Krasovskii-like composite energy function.
在线阅读 下载PDF
Error analysis for remote nonlinear iterative learning control system with wireless channel noise 被引量:4
17
作者 方勇 颜华超 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期7-11,共5页
In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-IL... In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct. 展开更多
关键词 remote control system iterative learning control (ILC) stable convergence fluctuation boundary control performance
在线阅读 下载PDF
An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes 被引量:11
18
作者 王立敏 陈曦 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期401-411,共11页
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w... Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach. 展开更多
关键词 two-dimensional Fornasini-Marchsini model batch process iterative learning control linear matrix inequality fault-tolerant guaranteed cost control
在线阅读 下载PDF
Adaptive Iterative Learning Control for Nonlinear Time-delay Systems with Periodic Disturbances Using FSE-neural Network 被引量:4
19
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI 2011年第4期403-410,共8页
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad... An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme. 展开更多
关键词 Adaptive control iterative learning control (ILC) time-delay systems Fourier series expansion-neural network periodic disturbances.
在线阅读 下载PDF
2D multi-model general predictive iterative learning control for semi-batch reactor with multiple reactions 被引量:2
20
作者 BO Cui-mei YANG Lei +2 位作者 HUANG Qing-qing LI Jun GAO Fu-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2613-2623,共11页
Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterativ... Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterative learning control(2D-MGPILC) strategy based on the multi-model with time-varying weights was introduced for optimizing the tracking performance of desired temperature profile. This strategy was modeled based on an iterative learning control(ILC) algorithm for a 2D system and designed in the generalized predictive control(GPC) framework. Firstly, a multi-model structure with time-varying weights was developed to describe the complex operation of a general semi-batch reactor. Secondly, the 2 D-MGPILC algorithm was proposed to optimize simultaneously the dynamic performance along the time and batch axes. Finally, simulation for the controller design of a semi-batch reactor with multiple reactions was involved to demonstrate that the satisfactory performance could be achieved despite of the repetitive or non-repetitive disturbances. 展开更多
关键词 two-dimensional system iterative learning control GENERAL PREDICTIVE control semi-batch REACTOR
在线阅读 下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部