Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Modified Chebyshev Picard Iteration is an iterative numerical method for solving linear or non-linear ordinary differential equations.In a serial computational environment the method has been shown to compete with,or ...Modified Chebyshev Picard Iteration is an iterative numerical method for solving linear or non-linear ordinary differential equations.In a serial computational environment the method has been shown to compete with,or outperform,current state of practice numerical integrators.This paper presents several improvements to the basic method,designed to further increase the computational efficiency of solving the equations of perturbed orbit propagation.展开更多
This paper consists of two parts. In the first part, we discuss the Hoelder continuity of Cauchy-type integral operator T of isotonic functions and the relationship between ||T[f] ||α and ||f||α. In the seco...This paper consists of two parts. In the first part, we discuss the Hoelder continuity of Cauchy-type integral operator T of isotonic functions and the relationship between ||T[f] ||α and ||f||α. In the second part, firstly, we introduce a modified Cauchy-type integral operator T' and demonstrate that the operator T' has a unique fixed point by the Contraction Mapping Principle. Then we give the Mann iterative sequence and prove that the Mann iterative sequence strongly converges to the fixed point of the modified Cauchy-type integral operator T'.展开更多
In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, ...In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.展开更多
针对传统轨道角动量(Orbital Angular Momentum,OAM)通信系统难以在视距信道受阻塞的非视距环境中正常工作以及无法有效保障多用户的服务质量(Quality of Service,QoS)需求问题,文中基于智能反射表面辅助技术将多用户的非视距信道转化...针对传统轨道角动量(Orbital Angular Momentum,OAM)通信系统难以在视距信道受阻塞的非视距环境中正常工作以及无法有效保障多用户的服务质量(Quality of Service,QoS)需求问题,文中基于智能反射表面辅助技术将多用户的非视距信道转化为等效的视距信道,并在此场景下提出基于太赫兹多用户OAM正交频分多址系统下行资源优化方法。基于双层迭代资源分配算法将非凸联合优化的求解分解成外部和内部两个优化流程,基于交替优化和凸优化理论逐一求解4个核心子问题,实现各用户QoS差异化保障下的系统容量最大化。仿真结果表明,所提方法在通信资源充足时对各用户的QoS需求保障率为100%。在反射单元数量为768时,所提系统比传统OAM系统的系统容量平均提高了19.1%,并且误码率更低。在用户数量为3、信噪比为20 dB时,相较于基于相位补偿的MU(Multiuser)-OAM系统,所提系统的误码率下降了40.5%。展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equatio...The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
This paper presents a novel Fault Tolerant Control(FTC)scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV).First,an ada...This paper presents a novel Fault Tolerant Control(FTC)scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV).First,an adaptive law based on fixed-time non-singular fast terminal sliding mode control(NFTSMC),which focuses on the attitude tracking controller design for RLV in the presence of model couplings,parameter uncertainties and external disturbances,is proposed to produce virtual control command.On this basis,a novel Control Allocation(CA)based on accelerated Landwber iteration is presented to realize proportional allocation of virtual control command among the actuators according to the effective gain as well as the distance from the current position of actuator to corresponding saturation limit.Meanwhile a novel redistribution mechanism is introduced to redistribute oversaturated command among healthy actuators(non-faulty or redundant).The proposed method can be applied to a real-time FTC system so that the controller reconfiguring is not required in case of actuator faults.Finally,the effectiveness of the proposed method is demonstrated by numerical simulations.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics...The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003 has been developed, which verifies the effectiveness of the proposed method. The proposed method enhances the current-limiting interrupting performance of MCCB, and has reference significance for multi-body dynamics design for similar flexible metamorphic mechanisms in multi-fields.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘Modified Chebyshev Picard Iteration is an iterative numerical method for solving linear or non-linear ordinary differential equations.In a serial computational environment the method has been shown to compete with,or outperform,current state of practice numerical integrators.This paper presents several improvements to the basic method,designed to further increase the computational efficiency of solving the equations of perturbed orbit propagation.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1077104911171349)the Science Foundation of Hebei Province(Grant No.A2010000346)
文摘This paper consists of two parts. In the first part, we discuss the Hoelder continuity of Cauchy-type integral operator T of isotonic functions and the relationship between ||T[f] ||α and ||f||α. In the second part, firstly, we introduce a modified Cauchy-type integral operator T' and demonstrate that the operator T' has a unique fixed point by the Contraction Mapping Principle. Then we give the Mann iterative sequence and prove that the Mann iterative sequence strongly converges to the fixed point of the modified Cauchy-type integral operator T'.
基金supported by the National Natural Science Foundation of China(Nos.41274119,41174080,and 41004041)the 863 Program of China(No.2012AA09A20103)
文摘In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
基金Supported by the National Natural Science Foundation of China under Grant No. 40876010the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08+3 种基金the R & D Special Fund for Public Welfare Industry (meteorology) under Grant No. GYHY200806010the LASG State Key Laboratory Special Fundthe E-Institutes of Shanghai Municipal Education Commission under Grant No. E03004the Natural Science Foundation of Zhejiang Province under Grant No. Y6090164
文摘The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金the financial supports by the open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology,China(No.HIT.KLOF.MST.2018028)the open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology,China(No.HIT.KLOF.MST.201704)。
文摘This paper presents a novel Fault Tolerant Control(FTC)scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV).First,an adaptive law based on fixed-time non-singular fast terminal sliding mode control(NFTSMC),which focuses on the attitude tracking controller design for RLV in the presence of model couplings,parameter uncertainties and external disturbances,is proposed to produce virtual control command.On this basis,a novel Control Allocation(CA)based on accelerated Landwber iteration is presented to realize proportional allocation of virtual control command among the actuators according to the effective gain as well as the distance from the current position of actuator to corresponding saturation limit.Meanwhile a novel redistribution mechanism is introduced to redistribute oversaturated command among healthy actuators(non-faulty or redundant).The proposed method can be applied to a real-time FTC system so that the controller reconfiguring is not required in case of actuator faults.Finally,the effectiveness of the proposed method is demonstrated by numerical simulations.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2011CB706506)National S&T Great Special of China(Grant Nos. 2012ZX04010011, 2011ZX04014-131)+1 种基金National Science Foundation for Young Scholars of China(Grant No. 51005204)Postdoctoral Fund of China(Grant No. 20100471000)
文摘The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003 has been developed, which verifies the effectiveness of the proposed method. The proposed method enhances the current-limiting interrupting performance of MCCB, and has reference significance for multi-body dynamics design for similar flexible metamorphic mechanisms in multi-fields.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.