This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that th...This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that the attitude dynamics is decoupled from the orbit dynamics,the fully coupled dynamics is required for the solutions of uncontrolled space debris and space objects with high area-to-mass ratio,for which cross sectional area is constantly changing leading to significant change on the solar radiation pressure and atmospheric drag.MCPI is a set of methods for solution of initial value problems and boundary value problems.The methods refine an orthogonal function approximation of long-time-interval segments of state trajectories iteratively by fusing Chebyshev polynomials with the classical Picard iteration and have been applied to multiple challenging aerospace problems.Through the studies on integrating a torque-free rigid body rotation and a long-term integration of the coupled orbit-attitude dynamics through the effect of solar radiation pressure,MCPI methods are shown to achieve several times speedup over the Runge-Kutta 7(8)methods with several orders of magnitudes of better accuracy.MCPI methods are further optimized by integrating the decoupled dynamics at the beginning of the iteration and coupling the full dynamics when the attitude solutions and orbit solutions are converging during the iteration.The approach of decoupling and then coupling during iterations provides a unique and promising perspective on the way to warm start the solution process for the longterm integration of the coupled orbit-attitude dynamics.Furthermore,an attractive feature of MCPI in maintaining the unity constraint for the integration of quaternions within machine accuracy is illustrated to be very appealing.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODE...This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODEs).A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM.It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM.The global variational iteration method is briefly reviewed,and further recast into a Local VIM,which is much more convenient and capable of predicting long term complex dynamic responses of nonlinear systems even if they are chaotic.展开更多
This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration, secant line method, etc.) for solving nonlinear equations and advances some geometrical methods of iteration that are fle...This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration, secant line method, etc.) for solving nonlinear equations and advances some geometrical methods of iteration that are flexible and efficient.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the conv...Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.展开更多
In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are pr...In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.展开更多
Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical s...Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.展开更多
Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A no...Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
文摘This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that the attitude dynamics is decoupled from the orbit dynamics,the fully coupled dynamics is required for the solutions of uncontrolled space debris and space objects with high area-to-mass ratio,for which cross sectional area is constantly changing leading to significant change on the solar radiation pressure and atmospheric drag.MCPI is a set of methods for solution of initial value problems and boundary value problems.The methods refine an orthogonal function approximation of long-time-interval segments of state trajectories iteratively by fusing Chebyshev polynomials with the classical Picard iteration and have been applied to multiple challenging aerospace problems.Through the studies on integrating a torque-free rigid body rotation and a long-term integration of the coupled orbit-attitude dynamics through the effect of solar radiation pressure,MCPI methods are shown to achieve several times speedup over the Runge-Kutta 7(8)methods with several orders of magnitudes of better accuracy.MCPI methods are further optimized by integrating the decoupled dynamics at the beginning of the iteration and coupling the full dynamics when the attitude solutions and orbit solutions are converging during the iteration.The approach of decoupling and then coupling during iterations provides a unique and promising perspective on the way to warm start the solution process for the longterm integration of the coupled orbit-attitude dynamics.Furthermore,an attractive feature of MCPI in maintaining the unity constraint for the integration of quaternions within machine accuracy is illustrated to be very appealing.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
文摘This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODEs).A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM.It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM.The global variational iteration method is briefly reviewed,and further recast into a Local VIM,which is much more convenient and capable of predicting long term complex dynamic responses of nonlinear systems even if they are chaotic.
文摘This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration, secant line method, etc.) for solving nonlinear equations and advances some geometrical methods of iteration that are flexible and efficient.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
文摘Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.
基金Natural Science Foundation of China under grants 10371137 and 10201034 the Foundation of Doctoral Program of National Higher Education of China under grant 20030558008 Guangdong Provincial Natural Science Foundation of China under grant 1011170 the Foundation of Zhongshan University Advanced Research Center.
文摘In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.
文摘Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.
基金work is supported by the Fundamental Research Funds for the Central Universities(No.3102019HTQD014)of Northwestern Polytechnical UniversityFunding of National Key Laboratory of Astronautical Flight DynamicsYoung Talent Support Project of Shaanxi State.
文摘Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.