期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
Indentation of a Plate on a Thin Transversely Isotropic Elastic Layer
1
作者 Juyao Li Guozheng Zhang +1 位作者 Liu Wang Zhaohe Dai 《Acta Mechanica Solida Sinica》 2025年第2期331-340,共10页
This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scale... This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scales from piezoresistive tests on graphite nanoflakes to the bending of floating ice shelves atop seabed,where the elastic layer commonly exhibits certain anisotropy.We first develop an approximate model to describe the elastic response of a transversely isotropic layer by exploiting the slenderness of the layer.We show that this approximate model can be reduced to the classic compressible Winkler foundation model as the elastic constants of the layer are set isotropic.We then investigate the combined response of an elastic plate on the transversely isotropic elastic layer.Facilitated by the simplicity of our proposed approximate model,we can derive simple analytical solutions for the cases of small and large indenter radi.The analytical results agree well with numerical calculations obtained via finite element methods,as long as the system is sufficiently slender in a mechanical sense.These results offer quantitative insights into the mechanical behavior of numerous semiconductor materials characterized by transverse isotropy and employed with slender geometries in various practical applications where the thin layer works as conductive and functional layers. 展开更多
关键词 INDENTATION Elastic layers-Transversely isotropic Winkler foundation GRAPHITE
原文传递
Analyzing point liquid loading effects on transversely isotropic poroelastic media using Green's function
2
作者 Muzammal Hameed Tariq Yue-Ting Zhou 《Communications in Theoretical Physics》 2025年第8期1-10,共10页
Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential... Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential. This paper presents a comprehensive analysis of infinite transversely isotropic poroelasticity under a fluid source, based on Biot's theory, aiming to uncover new and previously unexplored insights in the literature. We begin our study by deriving a general solution for fluid-saturated, transversely isotropic poroelastic materials in terms of harmonic functions that satisfy sixth-order homogeneous partial differential equations, using potential theory and Almansi's theorem. Based on these general solutions and potential functions, we construct a Green's function for a point fluid source, introducing three new harmonic functions with undetermined constants. These constants are determined by enforcing continuity and equilibrium conditions. Substituting these into the general solution yields fundamental solutions for poroelasticity that provide crucial support for a wide range of project problems. Numerical results and comparisons with existing literature are provided to illustrate physical mechanisms through contour plots. Our observations reveal that all components tend to zero in the far field and become singular at the concentrated source. Additionally, the contours exhibit rapid changes near the point fluid source but display gradual variations at a distance from it. These findings highlight the intricate behavior of the system under point liquid loading, offering valuable insights for further research and practical applications. 展开更多
关键词 poroelasticity one-point loading Green’s functions transversely isotropic materials potential theory method
原文传递
Mechanical Properties and Damage Model of Transversely Isotropic Rocks Subjected to Freeze-Thaw Cycles
3
作者 YANG Xiurong JIANG Annan WANG Dong 《Journal of Ocean University of China》 2025年第5期1245-1255,共11页
The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T an... The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction. 展开更多
关键词 transversely isotropic freeze-thaw cycles Hoek-Brown criterion damage parameter constitutive model
在线阅读 下载PDF
Lithospheric plane strain deformation due to tensile faulting
4
作者 Nirmal Soni Sunita Rani Neeru Bala 《Earthquake Engineering and Engineering Vibration》 2025年第2期301-309,I0029-I0032,共13页
A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)wit... A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)with an opening in the horizontal direction located in the isotropic layer is derived in the integral form by employing Airy’s stress function approach for the plane strain case.The linear combination of exponential terms appearing in the denominator of the integral expressions of the deformation field of the EIL is expressed as a finite sum of exponential terms(FSET)by applying the method of least squares to analytically compute the deformation field.The displacement field is discussed in detail and computed numerically by considering the EOHS as olivine or barytes material or considering half-space to be isotropic. 展开更多
关键词 plane strain deformation isotropic layer orthotropic half-space vertical tensile fault horizontal dislocation
在线阅读 下载PDF
Quasi-two-dimensional isotropic laser cooling of atoms for quantum sensing
5
作者 Xiao Zhang Yi Song +1 位作者 Yuan Sun Liang Liu 《Chinese Physics B》 2025年第8期584-589,共6页
Isotropic laser cooling(ILC)is widely recognized for its distinct advantages and demonstrates significant potential in quantum precision measurements and quantum sensing technologies.The morphology and density distrib... Isotropic laser cooling(ILC)is widely recognized for its distinct advantages and demonstrates significant potential in quantum precision measurements and quantum sensing technologies.The morphology and density distribution of the cold atomic cloud generated by ILC are strongly influenced by the distribution of cooling light and the structural geometry of the cavity,making precise characterization and optimization of cold atom distribution essential for practical applications.In this paper,we present an innovative flat diffuse cavity design with the dimensions approximating a quasi-two-dimensional configuration,which generates a sheet-like isotropic laser field inside the cavity through diffuse reflections.We thoroughly characterized the system’s performance under different optical parameter settings.A two-dimensional(2D)movable detection system was employed to detect the quasi-two-dimensional distribution of cold atoms.These results demonstrate the ability of ILC to produce diverse morphological and density distributions of cold atoms,which we anticipate will be suitable for quantum sensing. 展开更多
关键词 quasi-two-dimensional isotropic laser cooling quantum sensing
原文传递
Kelvin lattice structures fabricated by laser powder bed fusion:Design,preparation,and mechanical performance
6
作者 Yan-peng Wei Huai-qian Li +3 位作者 Ying-chun Ma Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 2025年第2期117-127,共11页
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga... Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal. 展开更多
关键词 Kelvin structure metallic lattice structures laser powder bed fusion mechanical model isotropic mechanical properties
在线阅读 下载PDF
A 2D equivalent linear model for seismic response analysis of a layered transversely isotropic half-space
7
作者 Liang Jianwen Zhang Ping Ba Zhenning 《Earthquake Engineering and Engineering Vibration》 2025年第2期311-332,共22页
Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate ... Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications. 展开更多
关键词 layered transversely isotropic half-space soil nonlinearity TI site response analysis stiffness matrix method equivalent linear model
在线阅读 下载PDF
An assumed enhanced strain finite element framework for tensile fracturing processes with dual-mechanism failure in transversely isotropic rocks
8
作者 Yang Zhao Rui Wang Jian-Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1474-1488,共15页
We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic roc... We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic rock matrix are treated with distinct enrichment,and a recently proposed dualmechanism tensile failure criterion for transversely isotropic rocks is adopted to determine crack initiation for the two failure modes.The cohesive crack model is adopted to characterize the response of embedded cracks.As for the numerical implementation of the proposed framework,both algorithms for the update of local history variables at Gauss points and of the global finite element system are derived.Four boundary-value problem simulations are carried out with the proposed framework,including uniaxial tension tests of Argillite,pre-notched square loaded in tension,three-point bending tests on Longmaxi shale,and simulations of tensile cracks induced by a strip load around a tunnel in transversely isotropic rocks.Simulation results reveal that the proposed framework can properly capture the tensile strength anisotropy and the anisotropic evolution of tensile cracks in transversely isotropic rocks. 展开更多
关键词 Tensile fracture Assumed enhanced strain finite element Three-point bending test transversely isotropic rock Tensile failure criterion
在线阅读 下载PDF
Topology Optimization of Orthotropic Materials Using the Improved Element-Free Galerkin (IEFG) Method
9
作者 Wenna He Yichen Yang +1 位作者 Dongqiong Liang Heng Cheng 《Computers, Materials & Continua》 2025年第4期1415-1437,共23页
In this paper,we develop an advanced computational framework for the topology optimization of orthotropic materials using meshless methods.The approximation function is established based on the improved moving least s... In this paper,we develop an advanced computational framework for the topology optimization of orthotropic materials using meshless methods.The approximation function is established based on the improved moving least squares(IMLS)method,which enhances the efficiency and stability of the numerical solution.The numerical solution formulas are derived using the improved element-free Galerkin(IEFG)method.We introduce the solid isotropic microstructures with penalization(SIMP)model to formulate a mathematical model for topology opti-mization,which effectively penalizes intermediate densities.The optimization problem is defined with the numerical solution formula and volume fraction as constraints.The objective function,which is the minimum value of flexibility,is optimized iteratively using the optimization criterion method to update the design variables efficiently and converge to an optimal solution.Sensitivity analysis is performed using the adjoint method,which provides accurate and efficient gradient information for the optimization algorithm.We validate the proposed framework through a series of numerical examples,including clamped beam,cantilever beam,and simply supported beam made of orthotropic materials.The convergence of the objective function is demonstrated by increasing the number of iterations.Additionally,the stability of the iterative process is analyzed by examining the fluctuation law of the volume fraction.By adjusting the parameters to an appropriate range,we achieve the final optimization results of the IEFG method without the checkerboard phenomenon.Comparative studies between the Element-Free Galerkin(EFG)and IEFG methods reveal that both methods yield consistent optimization results under identical parameter settings.However,the IEFG method significantly reduces computational time,highlighting its efficiency and suitability for orthotropic materials. 展开更多
关键词 Solid isotropic microstructures with penalization method variable density method sensitivity analysis improved element-free Galerkin method meshless method
在线阅读 下载PDF
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation
10
作者 Shuai Liang Wen-Jing Jiang Ji-Xiang Hu 《Chinese Journal of Structural Chemistry》 2025年第2期5-6,共2页
Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices... Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices[1].Thermal expansion is a pivotal aspect in solid state chemistry,intricately intertwined with various factors such as crystal structure,chemical composition,electronic configuration,microstructure,and defects.Most materials undergo isotropic and positive thermal expansion(PTE)because of the disharmonic vibrational amplitudes of their chemical bonds.Moreover,anisotropic thermal expansion(ATE)and negative thermal expansion(NTE)are fascinating physical attributes of solids,which can originate from electronic or magnetic mechanisms,as well as through a transverse phonon mechanism in insulating lattice solids. 展开更多
关键词 transducing thermal energy Thermal actuating materials Spin crossover Rhombus deformation isotropic positive thermal expansion pte solid state chemistryintricately molecular reconfigurations crystal structurechemical
原文传递
Isotropic sintering shrinkage of 3D glass-ceramic nanolattices:backbone preforming and mechanical enhancement 被引量:1
11
作者 Nianyao Chai Yunfan Yue +3 位作者 Xiangyu Chen Zhongle Zeng Sheng Li Xuewen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期418-426,共9页
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen... There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials. 展开更多
关键词 3D printing isotropic shrinkage femtosecond laser two-photon polymerization structural glass-ceramics
在线阅读 下载PDF
A refined deviatoric hardening plastic model for sand 被引量:1
12
作者 Min Wang Tongming Qu +2 位作者 Yuntian Feng Teng Liang Liangtong Zhan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2813-2821,共9页
The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately pr... The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures.The issue stems from the pressure independent hardening law in the classical deviatoric hardening model.To overcome this problem,we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations.Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands.Furthermore,to examine the importance of the improved deviatoric hardening model,it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures.It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials. 展开更多
关键词 Elasto-plastic deformation Isotropic hardening Deviatoric plastic strain Granular material Kinematic hardening Bounding surface
在线阅读 下载PDF
Bending short DNAs as transversely isotropic rings in series
13
作者 Chenyu Shi Meicheng Yao Bin Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第7期206-212,共7页
Despite the significance of the high flexibility exhibited by short DNAs,there remains an incomplete understanding of their anomalous persistence length.In this study,we propose to model each basic unit of gene sequen... Despite the significance of the high flexibility exhibited by short DNAs,there remains an incomplete understanding of their anomalous persistence length.In this study,we propose to model each basic unit of gene sequences within short DNAs as a transversely isotropic ring.Our comprehensive model analysis successfully replicates the observed high flexibility of short DNAs and also displays the impact of sequence dependence,aligning with experimental findings.Furthermore,our analysis suggests that the bending behavior of short DNAs can be effectively described by the Timoshenko beam theory with the consideration of shear. 展开更多
关键词 DNA Persistence length Timoshenko beam theory Transversely isotropic BENDING
原文传递
An Elastoplastic Fracture Model Based on Bond-Based Peridynamics
14
作者 Liping Zu Yaxun Liu +3 位作者 Haoran Zhang Lisheng Liu Xin Lai Hai Mei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2349-2371,共23页
Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to ... Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to describe plasticity directly using the classical plastic theory.To address the above issue,a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems.Compared to the existing models,the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means.The results obtained in the context of this model are shown to be consistent with FEM results in regard to force-displacement curves,displacement fields,stress fields,and plastic deformation regions.The model exhibits good capability of capturing crack propagation in ductile material failure problems. 展开更多
关键词 Ductile materials plastic deformation bond-based peridynamics isotropic hardening fracture analysis
在线阅读 下载PDF
Navigation Finsler metrics on a gradient Ricci soliton
15
作者 LI Ying MO Xiao-huan WANG Xiao-yang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期266-275,共10页
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b... In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton. 展开更多
关键词 gradient Ricci soliton navigation Finsler metric isotropic S-curvature Ricci curvature Gaussian shrinking soliton
在线阅读 下载PDF
Escape probability for isotropic emitters near Kerr black hole with astrometric
16
作者 Yu-Xuan Han Qing-Hua Zhu Qing-Guo Huang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期128-133,共6页
The paper investigates the escape probability for isotropic emitters near a Kerr black hole.We propose a new approach to obtain the escape probability in a general manner,going beyond previous case-by-case studies.Thi... The paper investigates the escape probability for isotropic emitters near a Kerr black hole.We propose a new approach to obtain the escape probability in a general manner,going beyond previous case-by-case studies.This approach is based on studies of the black hole shadow with astrometric observable and can be applied to emitters with an arbitrary 4-velocities and locations,even to the emitters outside of the equatorial plane.We also consider representative examples illustrating how escape probabilities vary with distance,velocity,and inclination angle.Overall,this new approach provides an effective method for studying escape probabilities near Kerr black holes. 展开更多
关键词 Kerr black hole photon escape probability isotropic emitters
原文传递
Amorphous Sb/C composite with isotropic expansion property as an ultra-stable and high-rate anode for lithium-ion batteries
17
作者 Ze-Zhou Yang Cheng-Yi Zhang +5 位作者 Yu-Qing Ou Zhi-Kang Su Yan Zhao Heng-Jiang Cong Xin-Ping Ai Jiang-Feng Qian 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2039-2052,共14页
Antimony(Sb)is an intriguing anode material for Li-ion batteries(LIBs)owing to its high theoretical capacity of 660 m Ah·g^(-1)and appropriate working potential of~0.8 V(vs.Li^(+)/Li).However,just like all alloyi... Antimony(Sb)is an intriguing anode material for Li-ion batteries(LIBs)owing to its high theoretical capacity of 660 m Ah·g^(-1)and appropriate working potential of~0.8 V(vs.Li^(+)/Li).However,just like all alloying materials,the Sb anode suffers from huge volume expansion(230%)during repeated insertion/extraction of Li+ions,resulting in structural deterioration and rapid capacity decay.In this work,a novel amorphous Sb/C composite with atomically dispersed Sb particles in carbon matrix is prepared via a straightforward high-energy ball milling approach.The intimate intermixing of amorphous Sb with C provides homogeneous element distribution and isotropic volume expansion during cycling,resulting in persistent structural stability.Meanwhile,the disordered structure of amorphous material shortens the diffusion distance of lithium ions/electrons,promoting fast reaction kinetics and rate capability.Benefiting from the aforementioned effects,the amorphous Sb/C exhibits a high reversible capacity of537.4 m Ah·g^(-1)at 0.1 A·g^(-1)and retains 201.0 m Ah·g^(-1)at an ultrahigh current rate of 10.0 A·g^(-1).Even after 1500deep cycles at 2.0 A·g^(-1),the amorphous Sb/C electrode still maintains 86.3%of its initial capacity,which outperforms all existing Sb-based anodes reported so far.Postmortem analysis further reveals a greatly reduced volume variation of merely 34.6%for the amorphous Sb/C electrode,much lower than that of 223.1%for crystalline Sb materials.This study presents a new approach to stabilizing Sb-based alloy anodes and contributes to the construction of high-performance amorphous anode materials for LIBs,enabling advanced energy storage. 展开更多
关键词 Amorphous Sb/C anode Homogeneous element distribution Isotropic volume expansion Ultra-long cycle stability High-rate capability Lithium-ion battery
原文传递
Systematic prediction of the gas content, fractures, and brittleness in fractured shale reservoirs with TTI medium
18
作者 Yun Zhao Xiao-Tao Wen +2 位作者 Chen-Long Li Yang Liu Chun-Lan Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3202-3221,共20页
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and... The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness. 展开更多
关键词 Petrophysical modeling Brittleness index Fracture gas indication factor(GFI) Tilted transversely isotropic(TTI) Fracture density
原文传递
Deep learning for determining pure isotropic proton spectra from solidstate spectra
19
作者 Mengjie Qiu Zhong Chen Yanqin Lin 《Magnetic Resonance Letters》 2024年第1期63-64,共2页
Recently,an article on ^(1)H solid-state NMR spectra was published,in which the authors proposed a deep learning approach to infer the pure isotropic proton NMR spectra obtained at an infinite magic angle spinning(MAS... Recently,an article on ^(1)H solid-state NMR spectra was published,in which the authors proposed a deep learning approach to infer the pure isotropic proton NMR spectra obtained at an infinite magic angle spinning(MAS)rate.This approach even allowed to obtain,by far,the best resolved ^(1)H spectra of molecular solids[1](https://doi.org/10.1002/anie.202216607).Deep learning based artificial intelligence is developing rapidly,and its application is deepening.Currently,there are many applications of deep learning in the field of magnetic resonance,such as the reconstruction of the under-sampled multidimensional spectra[2-4],the deconvolution of two-dimensional NMR spectra[5]and noise suppression and weak peak retrial[6],etc. 展开更多
关键词 SPECTRA ISOTROPIC STATE
在线阅读 下载PDF
Constitutive Model for Rubberlike Materials
20
作者 Fuzhang Zhao 《Advances in Pure Mathematics》 2024年第8期633-649,共17页
The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE... The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE constitutive model fits uniaxial tension test and predicts unfitted pure shear and equibiaxial tension tests of incompressible S4035A thermoplastic elastomer (TPE). Furthermore, the isotropic CSE model along with the Poisson function fits uniaxial tension test along with the kinematic relation test and predicts unfitted pure shear and equibiaxial tension tests along with the corresponding kinematic relation tests of a compressible synthetic rubber. The detailed procedures for uniquely identifying constitutive parameters are emphasized, the experimental characterization results are discussed, and the principles for constitutive models are summarized and augmented. 展开更多
关键词 Compressible Finite Elasticity Constitutive Modeling Isotropic CSE Functional Poisson Function Rubberlike Materials
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部