The Cretaceous Koum Basin is a rift-related half-graben in northern Cameroon,which constitutes a portion of the Yola Arm of the Upper Benue Trough.This study presents the first comprehensive dataset combining mineral-...The Cretaceous Koum Basin is a rift-related half-graben in northern Cameroon,which constitutes a portion of the Yola Arm of the Upper Benue Trough.This study presents the first comprehensive dataset combining mineral-ogical,bulk-rock geochemical,and stable C-H-O isotopic data for dark-gray,finegrained mudstones from the basin,providing new insights into its sediment source,paleoenvironment,and geodynamic setting.The mudstones primarily consist of phyllosilicates(~8.6%),feldspars(~30.5%),carbonates(~13.7%),and minor iron oxides(~2.7%),with vermiculite,illite,and kaolinite as the main clay minerals.The presence of analcime,ankerite,and dolomite suggests low-grade metamorphism and/or hydrothermal alteration.Fe_(2)O_(3)/K_(2)O(1.52-6.40)and SiO_(2)/Al_(2)O_(3)(2.97-4.68)ratios classify the mudstones as compositionally immature shales(ICV~1.64)with low-moderate chemical weathering(CIA~56.35;PIA~59.74;R^(3+)/R^(3+)+R^(2+)+M^(+)~0.51).Trace element ratios(Th/Sc~1.70,Zr/Sc~1.33,La/Sc~6.30,La/Th~4.14)indicate an intermediate igneous provenance from a continental crustal source.Paleoenviron-mental proxies suggest deposition in a dynamic basin environment marked by fluctuating redox(C org/P:0.21-178.34)and salinity(Sr/Ba:0.34-3.25;N-values:48-35.92)conditions,ranging from oxic to anoxic and brackish to saline.Major element data(SiO_(2) vs.Al_(2)O_(3)+K_(2)O+Na_(2)O)indicate a semi-arid regime,while Paleoclimatic indicators such as Sr/Cu(1.88-37.47)and C-values(0.12-0.93)suggests alter-nating humid and arid conditions.Notably,stable isotope data,reported here for the first time in the Koum Basin,reveal a predominantly terrestrial,fluvial-deltaic C_(3) plant source for organic carbon(δ^(13)C-25.2‰ to -35.2‰)and complex fluid-rock interactions involving meteoric and magmatic-metamorphic fluids under a warm,equatorial climate(δ^(18)O+3.6‰to +24.9‰,δ^(2)H-104‰ to-50‰).The combined mineralogical,geochemical,and isotopic data point to deposition in a tectonically active continental arc setting,with contributions from ocean island arc and passive margin sources.展开更多
The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic b...The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic backgrounds,rock types and genesis of the parent rocks related to the Early-Middle Jurassic ionic rare earth mineralization,typical deposits at Muzishan,Xiahu,and Zudong were investigated by conducting petrographic,geochronologic,whole-rock geochemical,and Sr-Nd-Pb isotope analyses,which found that the parent rocks from the Muzishan deposit were the A1-type K-feldspar granite(~195 Ma),from the Zudong deposit were the A2-type monzogranite(~171 Ma),and from the Xiahu deposit were the I-type monzogranite(~167 Ma).All the three granitic rocks underwent different degrees of fractionation,with the Xiahu granite experiencing the highest degree,followed by the Zudong granite,and the Muzishan granite undergoing the lowest degree.The Muzishan granite was concluded to be formed under an intraplate extensional tectonic regime influenced by the hotspots or the mantle plume.The Zudong granite was formed in a post-arc extensional setting related to subduction-collision-rollback of the paleo-Pacific Plate,which caused upwelling of the asthenosphere,thinning of the lithosphere,and partial melting of crustal materials.The Xiahu granite was generated under a transitional tectonic setting of extension and compression,triggered by delamination and rollback of the paleo-Pacific Plate.展开更多
In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes control...In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes controlling the groundwater chemistry is a major step in the sustainable management of the aquifers.A total of 29groundwater samples were collected and analysed.Ionic ratio graphs,multivariate statistical analysis,mineral saturation indices,stable isotopes,and geostatistics methods were used to examine the sources and the quality of the groundwater.The findings describe the water types in the district as Ca-Mg-HCO_(3)-Cl,Ca-Na-HCO_(3),Na-Ca-HCO_(3),Ca-Na-HCO_(3)-Cl,Na-Ca-HCO_(3)-Cl,mix water type,NaHCO_(3)-Cl,with possible evolution to Ca-Na-Cl-HCO_(3),and Na-Ca-Cl-HCO_(3).According to the IEWQI for drinking water,around 53.6% of the samples have good quality,whereas 10.7% have very low-quality groundwater.Only 3.45% of the samples are suitable to use for irrigation without treatment,whereas 41.4% are somewhat safe with minimal treatment.Water-rock interactions,including the dissolution and weathering of silicate minerals,cation exchange processes,and human activities like mining andquarrying,are some of the main factors influencing groundwater chemistry.Principal component analysis revealed that groundwater chemistry is influenced by a combination of natural and anthropogenic sources.The APCs-MLR receptor model quantifies the factors that play important roles in groundwater salinization,including mineral dissolution and weathering(19.4%),localised Cd(16%),Ni(14.6%),Pb(12.8%),and Fe(11.4%)contamination from urbanisation while unidentified sources of pollution account for about 26.0%.The stable isotopes revealed groundwater is of meteoric origin and water-rock interaction the major mechanism for groundwater mineralization.The results of this research highlight the need of implementing an integrated strategy for managing and accessing groundwater quality.展开更多
Medical isotopes are the foundation material for nuclear medicine and are primarily produced through in-reactor irradia-tion.Neutron spectrum regulation is the main technical approach for enhancing the production of m...Medical isotopes are the foundation material for nuclear medicine and are primarily produced through in-reactor irradia-tion.Neutron spectrum regulation is the main technical approach for enhancing the production of medical isotopes,and it requires determining the optimal neutron spectrum and quantifying the values of neutrons in different energy regions.We calculated the neutron energy region values for 20 medical isotopes(^(14)C,^(32)P,^(47)Sc,^(60)Co,^(64)Cu,^(67)Cu,^(89)Sr,^(90)Y,^(99)Mo,^(125)I,^(131)I,^(153)Sm,^(161)Tb,^(166)Ho,^(177)Lu,^(186)Re,^(188)Re,^(92)Ir,^(225)Ac,and ^(252)Cf).The entire energy range was divided into 238 energy regions to improve the energy spectrum resolution,and both fast and thermal reactors were simulated to enhance universal applicability.A dataset of neutron energy region values across the entire energy range was built,which identifies the positive and negative-energy regions and guides the neutron spectrum regulation process during in-reactor medical isotope produc-tion.We conducted neutron spectrum regulation based on this dataset,which effectively improved the production efficiency of medical isotopes and demonstrated the correctness and feasibility of the dataset.展开更多
The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho...The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho-types from the quarries in Kabbaldurga reveal a complex geological history in the Archean and early Paleoprotero-zoic.Magmatic protoliths predominantly record Paleoar-chean ages between 3.4 and 3.2 Ga.Combined U-Pb and Lu-Hf signatures indicate a history of recurrent crustal anatexis,juvenile magmatic input,and felsic injections.Mesoarchaean magmatic charnockites were generated mainly from hornblende-dehydration melting of Paleoar-chaean mafic rocks.In addition,Peninsular Gneissic Com-plex of the Dharwar Craton,commonly described as TTG suites,are likely generated by melting of hydrated basalt.The new data are consistent with the idea of a convecting magmatic cycle and also support the proposal that the southern Dharwar Craton comprises a tilted cross-sec-tion through the Archaean crust.Paleoproterozoic high-temperature event is documented here as a complex unit involving juvenile mafic magmatism,granulite facies imprints and crustal anatexis as well as felsic injections,occurring within a short time period around 2.5 Ga.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
The origin of dolostone in the Middle Jurassic Buqu Formation of the Plateau Basin has been a subject of prolonged debate.This study combines detailed petrological observations with analyses of Mg-C-O isotopes and ele...The origin of dolostone in the Middle Jurassic Buqu Formation of the Plateau Basin has been a subject of prolonged debate.This study combines detailed petrological observations with analyses of Mg-C-O isotopes and elements to constrain the origin of dolostones in the Buqu Formation.Petrography and cathodoluminescence(CL)examination identified three types of matrix dolostones:very finely to finely crystalline dolostone(D1),finely to medium crystalline dolostone(D2),and medium to coarsely crystalline dolostone(D3).The analysis of the diagenesis sequence reveals that D1 originated from the dolomitization of grainstone in the early diagenetic phase,whereas D2 and D3 resulted from the recrystallization of D1 during the later burial phase.The presence of high Na(>100 ppm),low Fe(<1000 ppm),low Mn(<250 ppm),positive Ce anomaly,LREE enrichment,stableδ^(26)Mg(-2.28‰to-2.04‰),andδ^(13)C(1.02‰-2.95‰)indicates that the early dolomitization fluid was oxidized seawater.As the crystal size increases(D1→D2→D3),the progressively rising Mn content and significantly negativeδ^(18)O(-10.72‰to-7.81‰)suggest that the dolostone has experienced modification and alteration by buried pore water in the later stages.The fluctuations in relative sea level during the sedimentary deposition of the Buqu Formation were reconstructed through the utilization of Na,Sr/Cu,Sr/Ba,Rb/Sr,∑REE,andδ^(13)C.It was observed that theδ^(26)Mg of dolostone closely mirrored the variations in sea level.The consistent trend of change confirms that sea level fluctuations control the formation and distribution of early dolostone.Frequent sea level rise and fall prompted the limestone deposited on the carbonate platform to be continuously transformed into dolostone,which accumulates over a long period to form large-scale thick dolostone.After the formation entered the burial stage,under the combined action of high Mg/Ca ratio pore water,high temperature,and high pressure,the early dolostone experienced the adjustment of burial dolomitization.This research offers a typical case study on the application of Mg-C-O isotope and elements to determine the origin of dolostone.This will aid in a more comprehensive understanding of the formation process of dolostone in ancient rock records.展开更多
The Arabian-Nubian Shield(ANS)serves as a key geological archive,preserving the tectono-thermal evolution associated with the Rodinia breakup(∼900–800 Ma)and Gondwana formation(∼800–620 Ma).The Katherina Ring Comp...The Arabian-Nubian Shield(ANS)serves as a key geological archive,preserving the tectono-thermal evolution associated with the Rodinia breakup(∼900–800 Ma)and Gondwana formation(∼800–620 Ma).The Katherina Ring Complex(KRC),located in the Sinai Peninsula,Egypt(northern ANS),exemplifies continental growth through multistage magmatism and orogenesis,spanning the Tonian to Ediacaran periods(∼900–530 Ma).Despite its importance,debates persist regarding the nature,age,crustal characteristics,and magma source evolution of its constituent units.Situated in the northwestern part of the KRC,the Wadi Rofaiyed Cu deposit offers an exceptional natural laboratory for investigating continental crust formation during this interval,owing to its superb exposure and preservation.This study integrates detailed fieldwork,petrographic analyses,whole-rock geochemistry,Sr-Nd isotopes,and in situ zircon U-Pb-Lu-Hf isotopic data.It aims to(i)establish a robust chronological framework for the unmetamorphosed plutonic rocks of the KRC,(ii)advance the understanding of associated geodynamic processes,and(iii)elucidate the episodic magmatism events.The findings show that Wadi Rofaiyed juvenile crust developed in four main phases:(i)a subduction-accretionary phase(∼755 Ma)characterized by intense calc-alkaline magmatism,originating from the partial melting of mafic lower crust;(ii)a syn-collisional phase(∼630 Ma)occurred during the collision between the Saharan metacraton and the younger ANS crust,producing I-type granitoids formed through magma mixing and crustal anatexis;(iii)a post-collisional phase characterized by intermediate I-type(∼595 Ma)to felsic A-type alkaline magma(∼594 Ma),originated from the partial melting of the overthickened lower crust corresponding to lithospheric delamination;and(iv)an anorogenic phase(∼530 Ma)related to the final amalgamation of Greater Gondwana.Isotopic analyses across all four magmatic phases reveal low initial^(87)Sr/^(86)Sr(0.702648–0.703311)and positiveε_(Hf)(t)(+2.84 to+7.78)andε_(Nd)(t)(+2.61 to+5.21)values,consistent with lower crustal sources with depleted mantle-like signatures.The model ages(T_(DM2))for these magmatic rocks derived from zircon Hf(1.2–1.5 Ga)and whole-rock Nd isotopes(0.96–1.17 Ga)support a predominantly juvenile crustal origin.These findings underscore the multistage tectono-magmatic evolution of the northern ANS,advancing our understanding of obduction-accretion dynamics and crustal development during the Neoproterozoic.展开更多
Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regiona...Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.展开更多
The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were repr...The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were reproduced to assess the reliability of these theoretical models.The production of neutron-deficient transcalifornium nuclei with Z=99-106 was examined in multinucleon transfer reactions,including^(124)Xe+^(248)Cm,^(124)Xe+^(249)Cf,and^(129)Xe+^(249)Cf.Both the driving potential and the neutron-to-proton equilibration ratio were found to dominate the nucleon transfer process.The reaction^(124)Xe+^(249)Cf is proposed as a promising projectile-target combination for producing neutron-deficient isotopes with Z=99-106,with the optimal incident energy identified as E_(c.m.)=533.64 MeV.Production cross-sections of 25 unknown neutron-deficient trancalifornium isotopes with cross-sections greater than 1 pb were predicted.展开更多
Hydrocarbons are one of the important fluids within the Earth's crust,and different biotic and abitoic processes can generate hydrocarbon during geological periods.Tracing the sources and sinks of hydrocarbons can...Hydrocarbons are one of the important fluids within the Earth's crust,and different biotic and abitoic processes can generate hydrocarbon during geological periods.Tracing the sources and sinks of hydrocarbons can help us better understand the carbon cycle of the earth.In this study,an improved approach of adsorbed hydrocarbons extraction from sediments was established.The improved thermal desorption approach,compound-specific isotope analysis and position-specific isotope analysis were integrated to investigate the molecular and intramolecular isotope fractionation between trace hydrocarbon gases within sediments and geological hydrocarbon deposits.The isotopic compositions of the terminal position carbon of propane(δ^(13)C_(terminal))serves as a correlation indicator between trace hydrocarbon gases within sediments and geological hydrocarbon deposits.The tight sandstone gas from the Turpan-Hami Basin is a first case study for the application of this novel method to trace hydrocarbon origins.The results showed that the hydrocarbons in the tight sandstone gases in the study area most likely originated from humic organic matter(typeⅢkerogen)at an early mature stage.δ^(13)C_(terminal)values of the thermally desorbed propane gases from different source rocks were distinguishable and the values of the tight sandstone gases significantly overlap with those of the Lower Jurassic Sangonghe source rocks,suggesting their genetic relationship.Overall,the results provided novel position-specific carbon isotopic constraints on origins of hydrocarbons.展开更多
0 INTRODUCTION Tin(Sn)deposits are genetically associated with reduced,crust-derived magmas where Sn is incompatible(as Sn^(2+))and tends to enrich in residual melts during magma evolution(e.g.,Lehmann,2021;Linnen et ...0 INTRODUCTION Tin(Sn)deposits are genetically associated with reduced,crust-derived magmas where Sn is incompatible(as Sn^(2+))and tends to enrich in residual melts during magma evolution(e.g.,Lehmann,2021;Linnen et al.,1995).In contrast,copper(Cu)deposits are typically related to oxidized,mantle-derived magmas where Cu is incompatible because sulfur(S)occurs as sulfate(e.g.,Deng et al.,2023;Sillitoe and Lehmann,2022;Jugo,2009).Thus,Sn and Cu mineralization are rarely coexisting in a single magmatic-hydrothermal deposit(Sillitoe and Lehmann,2022).展开更多
Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an...Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an opportunity to investigate the relationship between thermal processing and micrometeorite composition for a known precursor material.We conducted experiments to simulate the atmospheric entry of micrometeorites(MMs)using controlled,short-duration(10-50 s)flash heating(400-1600℃)of CI chondrite chips(<1500µm)in atmospheric air(1 bar,21%O2)combined with microanalysis(textures,chemical and isotopic compositions)of the experimental products.The heated chips closely resemble natural samples,with materials similar to unmelted MMs,partially melted(scoriaceous)MMs and fully melted cosmic spherules produced.We reproduced several key features such as dehydration cracks,magnetite rims,volatile gas release,vesicle formation and coalescence,melting and quench cooling.Our parameter space allows for discriminating peak temperature and heating duration effects.Peak temperature is the first-order control on MM mineralogy,while heating duration controls vesicle coalescence and homogenization.When compared against previous heating experiments,our data demonstrates that CI chondrite dust is more thermally resistant,relative to CM chondrite dust,by approximately+200℃.The 207 measurement of O-isotopes allows,for the first time,petrographic effects(such as volatile degassing and melting)to be correlated against bulk O-isotope evolution.Our results demonstrate findings applicable to CI chondrites and potentially to all fine-grained hydrated carbonaceous chondrite dust grains:(1)O-isotope variations arising during sub-solidus heating are dominated by the release of water from phyllosilicates,forcing the residual MM composition towards its anhydrous precursor composition.(2)Oxygen isotope compositions undergo the most significant changes at supra-solidus temperatures.As previously demonstrated and now empirically confirmed,most of these changes are driven by a mass-dependent fractionation effect caused by evaporation,which shifts residual rock compositions toward heavier values.Mixing with atmospheric air alters compositions toward the terrestrial fractionation line.Notably,these two processes do not begin simultaneously.Our data indicate that at 1200℃,isotopic evolution is dominated by evaporative mass loss.However,at higher temperatures(1400-1600℃),both pronounced evaporation and mixing with atmospheric oxygen become active,resulting in a more complex isotopic signature.(3)The total change in Δ17O during heating up to 1600℃is<3‰and in most scenarios<2‰.展开更多
The tectonic evolution of Borneo and the affiliation between Southern and Northern Borneo remains unclear.The Rajang and Crocker Fan sediments,as one of the largest ancient submarine fans in Southeast Asia have witnes...The tectonic evolution of Borneo and the affiliation between Southern and Northern Borneo remains unclear.The Rajang and Crocker Fan sediments,as one of the largest ancient submarine fans in Southeast Asia have witnessed the tectonic evolution of Borneo since at least the late Mesozoic.In this study,we present laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)U-Pb dating and Hf isotopic results of detrital zircons from the Trusmadi and Crocker formations within the Crocker Fan of Sabah,Northern Borneo.Our results,coupled with previous data,show that the Crocker Fan sediments in Sabah of Northern Borneo display similar age spectra to the Rajang Fan sediments in Sarawak of Central Borneo,with two major age clusters at 130-80 and 280-200 Ma.Further provenance analysis based on mineral shape with a prismatic characteristic and similar detrital zircon Hf isotopes of the two formations illustrates that the Jurassic-Cretaceous and partly Triassic detrital zircons of the Crocker and Rajang Fan sediments were derived from the erosion of contemporaneous magmatic rocks;part of Permian-Triassic ones could be the recycling of the Jurassic deposits in SW Borneo.The initial provenance of these Permian-Triassic detritus could be synchronous magmatic rocks in the Tin belt of the Malay Peninsula.Combining with previous data,we propose that the entire Borneo continent,including both Southern and Northern Borneo,developed a common Mesozoic continental magmatic arc.Moreover,we postulate that the Rajang and Crocker fans formed in a fore-arc extensional rift basin related to the retreat of the subducted Paleo-Pacific Plate beneath the Northern Borneo margin.展开更多
Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carb...Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.展开更多
Coal power plants annually generate quantities of byproducts that release environmentally hazardous heavy metals like Cd and Pb.Understanding the behavior and spatiotemporal impacts on soils of these releases is cruci...Coal power plants annually generate quantities of byproducts that release environmentally hazardous heavy metals like Cd and Pb.Understanding the behavior and spatiotemporal impacts on soils of these releases is crucial for pollution control.This study investigated the concentrations and isotope ratios of Cd/Pb in combustion byproducts,depositions and soils collected froma coal-fired power plant or its surrounding area.The pulverized fuel ash(PFA)and desulfurized gypsum(DG)exhibited heavier Cd isotopes withΔ^(114)Cd values of 0.304‰and 0.269‰,respectively,while bottom ash(BA)showed lighter Cd isotopes(Δ^(114)CdBA-coal=–0.078‰),compared to feed coal.We proposed a two-stage condensation process that governs the distribution of Cd/Pb,including accumulation on PFA and DG within electrostatic precipitators and desulfurization unit,as well as condensation onto fine particles upon release from the stack.Emissions from combustion and large-scale transport make a significant contribution to deposition,while the dispersion of Cd/Pb in deposition is primarily influenced by the prevailing wind patterns.However,the distribution of Cd/Pb in soils not only exhibit predominant wind control but is also potentially influenced by the resuspension of long-term storage byproducts.The power plant significantly contributes to soil in the NW–N–NE directions,even at a considerable distance(66%–79%),demonstrating its pervasive impact on remote regions along these orientations.Additionally,based on the vertical behavior in the profile,we have identified that Cd tends to migrate downward through leaching,while variations in Pb respond to the historical progression of dust removal.展开更多
Rivers and groundwater are the main water sources for cities.The mutual transformation between river water and groundwater makes it difficult to accurately evaluate and rationally utilize water resources.Scientificall...Rivers and groundwater are the main water sources for cities.The mutual transformation between river water and groundwater makes it difficult to accurately evaluate and rationally utilize water resources.Scientifically quantifying the interaction of surface water and groundwater remains challenging.Taking Chan River Basin as an example,this study aimed to determine the interconversion processes of groundwater and surface water by hydrogeochemical genesis mechanism analysis,isotope tracing,and end-member mixing analysis(EMMA).28 surface water samples and 23 groundwater samples were collected and analyzed during December 2023 and January 2024.Results showed thewater bodies in the study area were dominated by the HCO_(3)-Ca,HCO_(3)-Ca·Mg·Na,and HCO_(3)·SO_(4)-Ca·Na types,with hydrogeochemical processes controlled by the weathering and dissolution of both carbonate and silicate rock minerals.The river water in the upper reaches of the study area is mainly recharged by groundwater,with the average recharge ratio of 54.10%.Similarly,river water is still recharged by groundwater in the middle reaches,the average recharge ratio changes to 28.61%.In the downstream area,where Xi’an City located,due to the heavy exploitation of groundwater,the river water recharges to groundwater with an average recharge ratio of 85.23%,although in the immediate middle reaches,groundwater still replenishes surface waterwith a recharge rate of 75.00%.The results laid the bases for the reasonable utilization of water resources in the Chan River Basin and also served as a reference in other regions of the world.展开更多
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi...Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.展开更多
The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is signif...The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is significantly modified by humans.To understand the sulfur cycle in aquatic systems in arid environment,the chemical and sulfur and oxygen isotopic compositions (δ^(34)S_(SO4)and δ^(18)O_(SO4)) of major rivers around the Badain Jaran Desert,northwestern China,were investigated.These rivers had averaged SO_(4)^(2-)content at 1336μmol/L,over 10times higher than the global average.The δ^(34)S_(SO4)and δ^(18)O_(SO4)values ranged from-5.3‰to+11.8‰and+1.6‰to+12.8‰,respectively.The end-member analysis and the inverse model showed that riverine sulfate was mainly derived from evaporites dissolution (0-87%),sulfide oxidation (13%-100%) and precipitation (0-33%),indicating heterogeneity in sulfur sources and behaviors along the river drainage with the lithology variations and climate gradients.Multiple isotopic tools combining with hydro-chemistry compositions could be applied to reveal sulfur cycle in arid environment.Based on the calculation,sulfide oxidation plays the primary role in the headwater and upstream in the Qilian-Mountains area,where sulfide is widely exposed.While the proportion of evaporites dissolution contributing to riverine sulfate is much higher in downstream in a drier environment.Besides,less precipitation and higher temperature can lead to more intensive evaporation,affecting the process of sulfide oxidation and enhancing the rates of evaporites dissolution and sulfate precipitation in the basin.展开更多
Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re...Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.展开更多
文摘The Cretaceous Koum Basin is a rift-related half-graben in northern Cameroon,which constitutes a portion of the Yola Arm of the Upper Benue Trough.This study presents the first comprehensive dataset combining mineral-ogical,bulk-rock geochemical,and stable C-H-O isotopic data for dark-gray,finegrained mudstones from the basin,providing new insights into its sediment source,paleoenvironment,and geodynamic setting.The mudstones primarily consist of phyllosilicates(~8.6%),feldspars(~30.5%),carbonates(~13.7%),and minor iron oxides(~2.7%),with vermiculite,illite,and kaolinite as the main clay minerals.The presence of analcime,ankerite,and dolomite suggests low-grade metamorphism and/or hydrothermal alteration.Fe_(2)O_(3)/K_(2)O(1.52-6.40)and SiO_(2)/Al_(2)O_(3)(2.97-4.68)ratios classify the mudstones as compositionally immature shales(ICV~1.64)with low-moderate chemical weathering(CIA~56.35;PIA~59.74;R^(3+)/R^(3+)+R^(2+)+M^(+)~0.51).Trace element ratios(Th/Sc~1.70,Zr/Sc~1.33,La/Sc~6.30,La/Th~4.14)indicate an intermediate igneous provenance from a continental crustal source.Paleoenviron-mental proxies suggest deposition in a dynamic basin environment marked by fluctuating redox(C org/P:0.21-178.34)and salinity(Sr/Ba:0.34-3.25;N-values:48-35.92)conditions,ranging from oxic to anoxic and brackish to saline.Major element data(SiO_(2) vs.Al_(2)O_(3)+K_(2)O+Na_(2)O)indicate a semi-arid regime,while Paleoclimatic indicators such as Sr/Cu(1.88-37.47)and C-values(0.12-0.93)suggests alter-nating humid and arid conditions.Notably,stable isotope data,reported here for the first time in the Koum Basin,reveal a predominantly terrestrial,fluvial-deltaic C_(3) plant source for organic carbon(δ^(13)C-25.2‰ to -35.2‰)and complex fluid-rock interactions involving meteoric and magmatic-metamorphic fluids under a warm,equatorial climate(δ^(18)O+3.6‰to +24.9‰,δ^(2)H-104‰ to-50‰).The combined mineralogical,geochemical,and isotopic data point to deposition in a tectonically active continental arc setting,with contributions from ocean island arc and passive margin sources.
基金supported by the Open Fund Project of the Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources(Grant No.2022IREE101)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)the Geological Investigation Project(Grant Nos.DD20243483,DD20221643).
文摘The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic backgrounds,rock types and genesis of the parent rocks related to the Early-Middle Jurassic ionic rare earth mineralization,typical deposits at Muzishan,Xiahu,and Zudong were investigated by conducting petrographic,geochronologic,whole-rock geochemical,and Sr-Nd-Pb isotope analyses,which found that the parent rocks from the Muzishan deposit were the A1-type K-feldspar granite(~195 Ma),from the Zudong deposit were the A2-type monzogranite(~171 Ma),and from the Xiahu deposit were the I-type monzogranite(~167 Ma).All the three granitic rocks underwent different degrees of fractionation,with the Xiahu granite experiencing the highest degree,followed by the Zudong granite,and the Muzishan granite undergoing the lowest degree.The Muzishan granite was concluded to be formed under an intraplate extensional tectonic regime influenced by the hotspots or the mantle plume.The Zudong granite was formed in a post-arc extensional setting related to subduction-collision-rollback of the paleo-Pacific Plate,which caused upwelling of the asthenosphere,thinning of the lithosphere,and partial melting of crustal materials.The Xiahu granite was generated under a transitional tectonic setting of extension and compression,triggered by delamination and rollback of the paleo-Pacific Plate.
文摘In many places across the globe,including the Wassa District of Ghana,groundwater provides a significant supply of water for various purposes.Understanding the groundwater origin and hydrogeochemical processes controlling the groundwater chemistry is a major step in the sustainable management of the aquifers.A total of 29groundwater samples were collected and analysed.Ionic ratio graphs,multivariate statistical analysis,mineral saturation indices,stable isotopes,and geostatistics methods were used to examine the sources and the quality of the groundwater.The findings describe the water types in the district as Ca-Mg-HCO_(3)-Cl,Ca-Na-HCO_(3),Na-Ca-HCO_(3),Ca-Na-HCO_(3)-Cl,Na-Ca-HCO_(3)-Cl,mix water type,NaHCO_(3)-Cl,with possible evolution to Ca-Na-Cl-HCO_(3),and Na-Ca-Cl-HCO_(3).According to the IEWQI for drinking water,around 53.6% of the samples have good quality,whereas 10.7% have very low-quality groundwater.Only 3.45% of the samples are suitable to use for irrigation without treatment,whereas 41.4% are somewhat safe with minimal treatment.Water-rock interactions,including the dissolution and weathering of silicate minerals,cation exchange processes,and human activities like mining andquarrying,are some of the main factors influencing groundwater chemistry.Principal component analysis revealed that groundwater chemistry is influenced by a combination of natural and anthropogenic sources.The APCs-MLR receptor model quantifies the factors that play important roles in groundwater salinization,including mineral dissolution and weathering(19.4%),localised Cd(16%),Ni(14.6%),Pb(12.8%),and Fe(11.4%)contamination from urbanisation while unidentified sources of pollution account for about 26.0%.The stable isotopes revealed groundwater is of meteoric origin and water-rock interaction the major mechanism for groundwater mineralization.The results of this research highlight the need of implementing an integrated strategy for managing and accessing groundwater quality.
基金sponsored by the National Natural Science Foundation of China(No.12305190)Lingchuang Research Project of China National Nuclear Corporation(CNNC).
文摘Medical isotopes are the foundation material for nuclear medicine and are primarily produced through in-reactor irradia-tion.Neutron spectrum regulation is the main technical approach for enhancing the production of medical isotopes,and it requires determining the optimal neutron spectrum and quantifying the values of neutrons in different energy regions.We calculated the neutron energy region values for 20 medical isotopes(^(14)C,^(32)P,^(47)Sc,^(60)Co,^(64)Cu,^(67)Cu,^(89)Sr,^(90)Y,^(99)Mo,^(125)I,^(131)I,^(153)Sm,^(161)Tb,^(166)Ho,^(177)Lu,^(186)Re,^(188)Re,^(92)Ir,^(225)Ac,and ^(252)Cf).The entire energy range was divided into 238 energy regions to improve the energy spectrum resolution,and both fast and thermal reactors were simulated to enhance universal applicability.A dataset of neutron energy region values across the entire energy range was built,which identifies the positive and negative-energy regions and guides the neutron spectrum regulation process during in-reactor medical isotope produc-tion.We conducted neutron spectrum regulation based on this dataset,which effectively improved the production efficiency of medical isotopes and demonstrated the correctness and feasibility of the dataset.
基金funded by the India-Brazil bilateral co-operation Project:INT/BRAZIL/P-02/2013by Indian Statistical Institute,Geoscience Institute of São Paulo University,Brazil and Department of Geology,University of Calcutta.M.Hueck thanks FAPESP for a post-doctoral fellowship(grant 2019/06838-2).
文摘The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho-types from the quarries in Kabbaldurga reveal a complex geological history in the Archean and early Paleoprotero-zoic.Magmatic protoliths predominantly record Paleoar-chean ages between 3.4 and 3.2 Ga.Combined U-Pb and Lu-Hf signatures indicate a history of recurrent crustal anatexis,juvenile magmatic input,and felsic injections.Mesoarchaean magmatic charnockites were generated mainly from hornblende-dehydration melting of Paleoar-chaean mafic rocks.In addition,Peninsular Gneissic Com-plex of the Dharwar Craton,commonly described as TTG suites,are likely generated by melting of hydrated basalt.The new data are consistent with the idea of a convecting magmatic cycle and also support the proposal that the southern Dharwar Craton comprises a tilted cross-sec-tion through the Archaean crust.Paleoproterozoic high-temperature event is documented here as a complex unit involving juvenile mafic magmatism,granulite facies imprints and crustal anatexis as well as felsic injections,occurring within a short time period around 2.5 Ga.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
文摘The origin of dolostone in the Middle Jurassic Buqu Formation of the Plateau Basin has been a subject of prolonged debate.This study combines detailed petrological observations with analyses of Mg-C-O isotopes and elements to constrain the origin of dolostones in the Buqu Formation.Petrography and cathodoluminescence(CL)examination identified three types of matrix dolostones:very finely to finely crystalline dolostone(D1),finely to medium crystalline dolostone(D2),and medium to coarsely crystalline dolostone(D3).The analysis of the diagenesis sequence reveals that D1 originated from the dolomitization of grainstone in the early diagenetic phase,whereas D2 and D3 resulted from the recrystallization of D1 during the later burial phase.The presence of high Na(>100 ppm),low Fe(<1000 ppm),low Mn(<250 ppm),positive Ce anomaly,LREE enrichment,stableδ^(26)Mg(-2.28‰to-2.04‰),andδ^(13)C(1.02‰-2.95‰)indicates that the early dolomitization fluid was oxidized seawater.As the crystal size increases(D1→D2→D3),the progressively rising Mn content and significantly negativeδ^(18)O(-10.72‰to-7.81‰)suggest that the dolostone has experienced modification and alteration by buried pore water in the later stages.The fluctuations in relative sea level during the sedimentary deposition of the Buqu Formation were reconstructed through the utilization of Na,Sr/Cu,Sr/Ba,Rb/Sr,∑REE,andδ^(13)C.It was observed that theδ^(26)Mg of dolostone closely mirrored the variations in sea level.The consistent trend of change confirms that sea level fluctuations control the formation and distribution of early dolostone.Frequent sea level rise and fall prompted the limestone deposited on the carbonate platform to be continuously transformed into dolostone,which accumulates over a long period to form large-scale thick dolostone.After the formation entered the burial stage,under the combined action of high Mg/Ca ratio pore water,high temperature,and high pressure,the early dolostone experienced the adjustment of burial dolomitization.This research offers a typical case study on the application of Mg-C-O isotope and elements to determine the origin of dolostone.This will aid in a more comprehensive understanding of the formation process of dolostone in ancient rock records.
基金supported by the National Natural Science Foundation of China(No.92162103)the Natural Science Foundation of Hunan Province(No.2022JJ30699,No.2023JJ10064)the Science and Technology Innovation Program of Hunan Province(No.2021RC4055,No.2022RC1182).
文摘The Arabian-Nubian Shield(ANS)serves as a key geological archive,preserving the tectono-thermal evolution associated with the Rodinia breakup(∼900–800 Ma)and Gondwana formation(∼800–620 Ma).The Katherina Ring Complex(KRC),located in the Sinai Peninsula,Egypt(northern ANS),exemplifies continental growth through multistage magmatism and orogenesis,spanning the Tonian to Ediacaran periods(∼900–530 Ma).Despite its importance,debates persist regarding the nature,age,crustal characteristics,and magma source evolution of its constituent units.Situated in the northwestern part of the KRC,the Wadi Rofaiyed Cu deposit offers an exceptional natural laboratory for investigating continental crust formation during this interval,owing to its superb exposure and preservation.This study integrates detailed fieldwork,petrographic analyses,whole-rock geochemistry,Sr-Nd isotopes,and in situ zircon U-Pb-Lu-Hf isotopic data.It aims to(i)establish a robust chronological framework for the unmetamorphosed plutonic rocks of the KRC,(ii)advance the understanding of associated geodynamic processes,and(iii)elucidate the episodic magmatism events.The findings show that Wadi Rofaiyed juvenile crust developed in four main phases:(i)a subduction-accretionary phase(∼755 Ma)characterized by intense calc-alkaline magmatism,originating from the partial melting of mafic lower crust;(ii)a syn-collisional phase(∼630 Ma)occurred during the collision between the Saharan metacraton and the younger ANS crust,producing I-type granitoids formed through magma mixing and crustal anatexis;(iii)a post-collisional phase characterized by intermediate I-type(∼595 Ma)to felsic A-type alkaline magma(∼594 Ma),originated from the partial melting of the overthickened lower crust corresponding to lithospheric delamination;and(iv)an anorogenic phase(∼530 Ma)related to the final amalgamation of Greater Gondwana.Isotopic analyses across all four magmatic phases reveal low initial^(87)Sr/^(86)Sr(0.702648–0.703311)and positiveε_(Hf)(t)(+2.84 to+7.78)andε_(Nd)(t)(+2.61 to+5.21)values,consistent with lower crustal sources with depleted mantle-like signatures.The model ages(T_(DM2))for these magmatic rocks derived from zircon Hf(1.2–1.5 Ga)and whole-rock Nd isotopes(0.96–1.17 Ga)support a predominantly juvenile crustal origin.These findings underscore the multistage tectono-magmatic evolution of the northern ANS,advancing our understanding of obduction-accretion dynamics and crustal development during the Neoproterozoic.
基金supported by the National Natural Science Foundation of China(42161007)the Innovation Foundation of Higher Education Institutions of Gansu Province(2021B-081)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112).
文摘Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.
基金supported partly by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12105019,and 12047513)+1 种基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2023-05)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike ZY22096024)。
文摘The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were reproduced to assess the reliability of these theoretical models.The production of neutron-deficient transcalifornium nuclei with Z=99-106 was examined in multinucleon transfer reactions,including^(124)Xe+^(248)Cm,^(124)Xe+^(249)Cf,and^(129)Xe+^(249)Cf.Both the driving potential and the neutron-to-proton equilibration ratio were found to dominate the nucleon transfer process.The reaction^(124)Xe+^(249)Cf is proposed as a promising projectile-target combination for producing neutron-deficient isotopes with Z=99-106,with the optimal incident energy identified as E_(c.m.)=533.64 MeV.Production cross-sections of 25 unknown neutron-deficient trancalifornium isotopes with cross-sections greater than 1 pb were predicted.
基金financially supported by the National Natural Science Foundation of China(Grant No.42102202)U.S.Department of Energy Geosciences program(DE-SC0016271)。
文摘Hydrocarbons are one of the important fluids within the Earth's crust,and different biotic and abitoic processes can generate hydrocarbon during geological periods.Tracing the sources and sinks of hydrocarbons can help us better understand the carbon cycle of the earth.In this study,an improved approach of adsorbed hydrocarbons extraction from sediments was established.The improved thermal desorption approach,compound-specific isotope analysis and position-specific isotope analysis were integrated to investigate the molecular and intramolecular isotope fractionation between trace hydrocarbon gases within sediments and geological hydrocarbon deposits.The isotopic compositions of the terminal position carbon of propane(δ^(13)C_(terminal))serves as a correlation indicator between trace hydrocarbon gases within sediments and geological hydrocarbon deposits.The tight sandstone gas from the Turpan-Hami Basin is a first case study for the application of this novel method to trace hydrocarbon origins.The results showed that the hydrocarbons in the tight sandstone gases in the study area most likely originated from humic organic matter(typeⅢkerogen)at an early mature stage.δ^(13)C_(terminal)values of the thermally desorbed propane gases from different source rocks were distinguishable and the values of the tight sandstone gases significantly overlap with those of the Lower Jurassic Sangonghe source rocks,suggesting their genetic relationship.Overall,the results provided novel position-specific carbon isotopic constraints on origins of hydrocarbons.
基金financially supported by the National Natural Science Foundation of China(Nos.42002080,42302092)the Guangxi Technology Base and Talent Project(No.Guike AD20238013)the Provincial Natural Science Foundation of Hunan(No.2024JJ5394)。
文摘0 INTRODUCTION Tin(Sn)deposits are genetically associated with reduced,crust-derived magmas where Sn is incompatible(as Sn^(2+))and tends to enrich in residual melts during magma evolution(e.g.,Lehmann,2021;Linnen et al.,1995).In contrast,copper(Cu)deposits are typically related to oxidized,mantle-derived magmas where Cu is incompatible because sulfur(S)occurs as sulfate(e.g.,Deng et al.,2023;Sillitoe and Lehmann,2022;Jugo,2009).Thus,Sn and Cu mineralization are rarely coexisting in a single magmatic-hydrothermal deposit(Sillitoe and Lehmann,2022).
基金ISRO-RESPOND GAP3332 and PMN-MOES GAP2175 Project support this work.
文摘Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an opportunity to investigate the relationship between thermal processing and micrometeorite composition for a known precursor material.We conducted experiments to simulate the atmospheric entry of micrometeorites(MMs)using controlled,short-duration(10-50 s)flash heating(400-1600℃)of CI chondrite chips(<1500µm)in atmospheric air(1 bar,21%O2)combined with microanalysis(textures,chemical and isotopic compositions)of the experimental products.The heated chips closely resemble natural samples,with materials similar to unmelted MMs,partially melted(scoriaceous)MMs and fully melted cosmic spherules produced.We reproduced several key features such as dehydration cracks,magnetite rims,volatile gas release,vesicle formation and coalescence,melting and quench cooling.Our parameter space allows for discriminating peak temperature and heating duration effects.Peak temperature is the first-order control on MM mineralogy,while heating duration controls vesicle coalescence and homogenization.When compared against previous heating experiments,our data demonstrates that CI chondrite dust is more thermally resistant,relative to CM chondrite dust,by approximately+200℃.The 207 measurement of O-isotopes allows,for the first time,petrographic effects(such as volatile degassing and melting)to be correlated against bulk O-isotope evolution.Our results demonstrate findings applicable to CI chondrites and potentially to all fine-grained hydrated carbonaceous chondrite dust grains:(1)O-isotope variations arising during sub-solidus heating are dominated by the release of water from phyllosilicates,forcing the residual MM composition towards its anhydrous precursor composition.(2)Oxygen isotope compositions undergo the most significant changes at supra-solidus temperatures.As previously demonstrated and now empirically confirmed,most of these changes are driven by a mass-dependent fractionation effect caused by evaporation,which shifts residual rock compositions toward heavier values.Mixing with atmospheric air alters compositions toward the terrestrial fractionation line.Notably,these two processes do not begin simultaneously.Our data indicate that at 1200℃,isotopic evolution is dominated by evaporative mass loss.However,at higher temperatures(1400-1600℃),both pronounced evaporation and mixing with atmospheric oxygen become active,resulting in a more complex isotopic signature.(3)The total change in Δ17O during heating up to 1600℃is<3‰and in most scenarios<2‰.
基金jointly supported by the Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources,Xiamen(No.2018002)the Guangxi Natural Science Fundation(No.2022GXNSFBA035588)+1 种基金the National Natural Science Foundation of China(Nos.41506050,41402193)the Scientific Research Foundation of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(No.19-185-17-09)。
文摘The tectonic evolution of Borneo and the affiliation between Southern and Northern Borneo remains unclear.The Rajang and Crocker Fan sediments,as one of the largest ancient submarine fans in Southeast Asia have witnessed the tectonic evolution of Borneo since at least the late Mesozoic.In this study,we present laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)U-Pb dating and Hf isotopic results of detrital zircons from the Trusmadi and Crocker formations within the Crocker Fan of Sabah,Northern Borneo.Our results,coupled with previous data,show that the Crocker Fan sediments in Sabah of Northern Borneo display similar age spectra to the Rajang Fan sediments in Sarawak of Central Borneo,with two major age clusters at 130-80 and 280-200 Ma.Further provenance analysis based on mineral shape with a prismatic characteristic and similar detrital zircon Hf isotopes of the two formations illustrates that the Jurassic-Cretaceous and partly Triassic detrital zircons of the Crocker and Rajang Fan sediments were derived from the erosion of contemporaneous magmatic rocks;part of Permian-Triassic ones could be the recycling of the Jurassic deposits in SW Borneo.The initial provenance of these Permian-Triassic detritus could be synchronous magmatic rocks in the Tin belt of the Malay Peninsula.Combining with previous data,we propose that the entire Borneo continent,including both Southern and Northern Borneo,developed a common Mesozoic continental magmatic arc.Moreover,we postulate that the Rajang and Crocker fans formed in a fore-arc extensional rift basin related to the retreat of the subducted Paleo-Pacific Plate beneath the Northern Borneo margin.
基金Supported by the National Natural Science Foundation of China(Nos.42322302,42373048)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2022207)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020303)the Laoshan Laboratory(No.LSKJ202204100)。
文摘Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.
基金supported by the National Natural Science Foundation of China(No.42025705)the Construction Project of Modern Agricultural Science and Technology Innovation Alliance of Guangdong Province,China(No.2023KJ112)+1 种基金the National Natural Science Foundation of China(Nos.41977291 and 42177242)the GDAS’Project of Science and Technology Development,China(No.2019GDASYL-0103048).
文摘Coal power plants annually generate quantities of byproducts that release environmentally hazardous heavy metals like Cd and Pb.Understanding the behavior and spatiotemporal impacts on soils of these releases is crucial for pollution control.This study investigated the concentrations and isotope ratios of Cd/Pb in combustion byproducts,depositions and soils collected froma coal-fired power plant or its surrounding area.The pulverized fuel ash(PFA)and desulfurized gypsum(DG)exhibited heavier Cd isotopes withΔ^(114)Cd values of 0.304‰and 0.269‰,respectively,while bottom ash(BA)showed lighter Cd isotopes(Δ^(114)CdBA-coal=–0.078‰),compared to feed coal.We proposed a two-stage condensation process that governs the distribution of Cd/Pb,including accumulation on PFA and DG within electrostatic precipitators and desulfurization unit,as well as condensation onto fine particles upon release from the stack.Emissions from combustion and large-scale transport make a significant contribution to deposition,while the dispersion of Cd/Pb in deposition is primarily influenced by the prevailing wind patterns.However,the distribution of Cd/Pb in soils not only exhibit predominant wind control but is also potentially influenced by the resuspension of long-term storage byproducts.The power plant significantly contributes to soil in the NW–N–NE directions,even at a considerable distance(66%–79%),demonstrating its pervasive impact on remote regions along these orientations.Additionally,based on the vertical behavior in the profile,we have identified that Cd tends to migrate downward through leaching,while variations in Pb respond to the historical progression of dust removal.
基金supported by the National Natural Science Foundation of China(Nos.42341102 and 42102288)the Forestry Science and Technology Innovation Project of Shaanxi Province(No.SXLK2023–02–1)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.300102263401)the Fundamental Research Funds for the Central Universities,China(No.300102294905).
文摘Rivers and groundwater are the main water sources for cities.The mutual transformation between river water and groundwater makes it difficult to accurately evaluate and rationally utilize water resources.Scientifically quantifying the interaction of surface water and groundwater remains challenging.Taking Chan River Basin as an example,this study aimed to determine the interconversion processes of groundwater and surface water by hydrogeochemical genesis mechanism analysis,isotope tracing,and end-member mixing analysis(EMMA).28 surface water samples and 23 groundwater samples were collected and analyzed during December 2023 and January 2024.Results showed thewater bodies in the study area were dominated by the HCO_(3)-Ca,HCO_(3)-Ca·Mg·Na,and HCO_(3)·SO_(4)-Ca·Na types,with hydrogeochemical processes controlled by the weathering and dissolution of both carbonate and silicate rock minerals.The river water in the upper reaches of the study area is mainly recharged by groundwater,with the average recharge ratio of 54.10%.Similarly,river water is still recharged by groundwater in the middle reaches,the average recharge ratio changes to 28.61%.In the downstream area,where Xi’an City located,due to the heavy exploitation of groundwater,the river water recharges to groundwater with an average recharge ratio of 85.23%,although in the immediate middle reaches,groundwater still replenishes surface waterwith a recharge rate of 75.00%.The results laid the bases for the reasonable utilization of water resources in the Chan River Basin and also served as a reference in other regions of the world.
基金The Zhejiang Provincial Natural Science Foundation of China under contract No.LZ22D060002the Key R&D Program of Zhejiang under contract No.2022C03044the National Key Research and Development Program of China under contract No.2021YFC3101702。
文摘Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000)the National Key Research and Development Program of China (No. 2020YFA0607700)+2 种基金the National Natural Science Foundation of China (Nos. 41730857 and 42273050)the Key Research Program of the Institute of Geology&Geophysics,CAS (No. IGGCAS-202204)support from the Youth Innovation Promotion Association CAS (No.2019067)。
文摘The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is significantly modified by humans.To understand the sulfur cycle in aquatic systems in arid environment,the chemical and sulfur and oxygen isotopic compositions (δ^(34)S_(SO4)and δ^(18)O_(SO4)) of major rivers around the Badain Jaran Desert,northwestern China,were investigated.These rivers had averaged SO_(4)^(2-)content at 1336μmol/L,over 10times higher than the global average.The δ^(34)S_(SO4)and δ^(18)O_(SO4)values ranged from-5.3‰to+11.8‰and+1.6‰to+12.8‰,respectively.The end-member analysis and the inverse model showed that riverine sulfate was mainly derived from evaporites dissolution (0-87%),sulfide oxidation (13%-100%) and precipitation (0-33%),indicating heterogeneity in sulfur sources and behaviors along the river drainage with the lithology variations and climate gradients.Multiple isotopic tools combining with hydro-chemistry compositions could be applied to reveal sulfur cycle in arid environment.Based on the calculation,sulfide oxidation plays the primary role in the headwater and upstream in the Qilian-Mountains area,where sulfide is widely exposed.While the proportion of evaporites dissolution contributing to riverine sulfate is much higher in downstream in a drier environment.Besides,less precipitation and higher temperature can lead to more intensive evaporation,affecting the process of sulfide oxidation and enhancing the rates of evaporites dissolution and sulfate precipitation in the basin.
基金This study was supported by the National Natural Science Foundation of China(Grant Number:42007407,42022059)the Sino-German mobility program(M-0393)+1 种基金the Key Research Program of the Institute of Geology and Geophysics(CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.