Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accu...Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.展开更多
The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ...The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.展开更多
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The...The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.展开更多
Theoretical studies of the dynamics of the reactions O(3p)+H2/HD(ν=0, j=0)→OH+H have been performed with quasi-classical trajectory method (QCT) on an ab initio potential surface for the lowest triplet elect...Theoretical studies of the dynamics of the reactions O(3p)+H2/HD(ν=0, j=0)→OH+H have been performed with quasi-classical trajectory method (QCT) on an ab initio potential surface for the lowest triplet electronic state of H2O(aA"). The QCT-calculated integral cross sections are in good agreement with the earlier time-dependent quantum mechanics results. The state-resolved rotational distributions reveal that the product OH rotational distributions for O+HD have a preference for populating highly internally excited states compared with the O+H2 reaction. Distributions of differential cross sections show that directions of scattering are strongly dependent on the choice of quantum state. The polarization dependent generalized differential cross-sections and the distributions were calculated and a pronounced isotopic effect is revealed. The calculated results indicate that the product polarization is very sensitive to the mass factor.展开更多
We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechani...We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tun-neling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the avail-able experimental measurements.Strong isotope effects are revealed,the mode-specific funda-mental excitation effects on the tunneling rate are evidently influenced by the deuterium sub-stitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.展开更多
The anisotropic potential developed in our previous research and the close-coupling method are applied to the HBr-3He (4He, 5He, 6He, 7He) system, and the partial cross sections (PCSs) at the incident energy of 60...The anisotropic potential developed in our previous research and the close-coupling method are applied to the HBr-3He (4He, 5He, 6He, 7He) system, and the partial cross sections (PCSs) at the incident energy of 60meV are calculated. Based on the calculations, the influences of the isotope helium atom on PCSs are discussed in detail. The results show that the excitation PCSs converge faster than the elastic PCSs for the collision energy and the systems considered here. Also the excitation PCSs converge more rapidly for the high-excited states. The tail effect is present only in elastic scattering and low-exclted states but not in high-excited states. With the increase of reduced mass of the collision system, the converging speed of the elastic and excitation PCSs slows down, and the tail effect goes up.展开更多
Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3p) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A′ and 3A″p...Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3p) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A′ and 3A″potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P(θr) and P(Фr) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3p) + H2 (v = 0, j = 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P(θr) and PDDCSs of the 3A′ PES while the opposite on P(Фr) of the 3A′ potential energy surface.展开更多
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy...To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.展开更多
Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT)...Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P(0r), P(~r), and P(Or, Cr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j' is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.展开更多
Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences ...Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences between the reaction probabilities for J=0, integral cross sections for J≠0, branch ratios of the product and internuclear distances as well as product rotational alignments between the title reactions axe found. These differences are attributed mainly to the different reduced masses of the reactants and the different zero-point energies (ZPEs) of the transition state.展开更多
Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The ...Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The progress of the reaction was monitored spectrophotometrically by measuring the increasing absorbance of the reduced form of NADH at 340 nm. L-alanine, stereospecifically labeled with deuterium was synthesized by enzymatic reductive amination of pyruvate in presence of [(4R)-2H]-NADH, which was obtained by deuterium transfer from deuteriated formic acid to NAD~ catalyzed by FDH (formate dehydrogenase) (EC 1.2.1.2). [2-2H]-L-alanine, the product of enzymatic synthesis catalyzed by AIaDH, was obtained with 75% deuterium enrichment and values of isotopic effects were approximated to the values corresponding to 100% of deuterium incorporation. The enzyme AIaDH isolated from Bacillus subtilis shows pro-R stereospecificity, what indicates that hydrogen is exclusively transferred from pro-R position at C-4 of the nicotinamide ring of NADH to C-2 of pyruvate to form L-alanine. Some intrinsic mechanistic details of enzymatic oxidative deamination of L-alanine were discussed using determined numerical values of kinetic and solvent isotope effects on Vmax and Vmax,│KM展开更多
The planar oxygen isotope effect on Tc observed in copper oxide superconductors is remarkable in that it increases from near nil at optimal doping to a value twice that derived from BCS theory in the underdoped region...The planar oxygen isotope effect on Tc observed in copper oxide superconductors is remarkable in that it increases from near nil at optimal doping to a value twice that derived from BCS theory in the underdoped region. This behavior is quantitatively followed by a formula proposed by Kresin and Wolf in 1994 for polarons along the c-axis. Herein it is revisited in a more transparent way, and it is pointed out that the heterogeneity of pairing is relevant and has to be taken into account to explain the unusual planar isotope effects on Tc in underdoped cuprates.展开更多
This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical...This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical temperature is close to room temperature, specifically LaH<sub>10</sub>-LaD<sub>10</sub> and H<sub>3</sub>S-D<sub>3</sub>S systems. The Eliashberg-McMillan (EM) model and the recent Gor’kov-Kresin (GK) model for evaluating the isotope effects coefficient α were examined for these systems. The predicted values of α as a function of pressure, as compared to experimental values led to inference that these two models, despite their importance and simplicity, cannot be considered complete. These models can be used to calculate isotope effect of most superconducting materials with strong coupling coefficients but with critical reliability. The significance of studying the isotope effect lies in the possibility of identifying the interatomic forces that control the properties of superconducting materials such as electrons-mediated phonons and Coulomb interactions.展开更多
Triboelectric nanogenerators(TENGs)are advanced devices designed to harness mechanical energy from various sources such as vibrations,friction,or shear and convert it into electrical energy.Schottkybased tribovoltaic ...Triboelectric nanogenerators(TENGs)are advanced devices designed to harness mechanical energy from various sources such as vibrations,friction,or shear and convert it into electrical energy.Schottkybased tribovoltaic nanogenerators(TVNGs)are a type of TENG that incorporates a semiconductor-metal barrier,known as a Schottky barrier,into their design.This barrier aids in rectifying the generated electrical output,eliminating the need for external current rectification circuits.Further,silicon-based Schottky TVNGs can leverage existing surface functionalization procedures to improve device output and durability.Almost without exception,these procedures commence with an oxide-free and hydrogen-terminated silicon surface(Si-H).Replacing hydrogen with its heavier isotope deuterium(Si-D)does not hinder access to established surface chemistry procedures,and based on previous reports the isotope exchange is likely to improve resistance of the non-oxide semiconductor against its anodic decomposition.In this report we have developed the optimal surface chemistry procedures for preparing Si-D surfaces and explored to what extent this isotope effect translates into improved performances and durability of Schottky TVNGs.Our findings reveal that the maximum current output of TVNGs constructed on Si-D Si(111)crystals is comparable to that of mainstream Si-H devices.Additionally,we highlight a generally higher density of surface electrical defects in Si-D compared to Si-H,and verify the contribution of a flexoelectric term to the mechanic-to-electrical energy conversion mechanism.Ultimately,our experiments demonstrate that the primary advantage of replacing hydrogen with deuterium lies in enhancing device longevity.展开更多
The isotope effect on zonal flows(ZFs)and turbulence remains a key issue that is not completely solved in fusion plasmas.This paper presents the first experimental results of the ab initio prediction of causal relatio...The isotope effect on zonal flows(ZFs)and turbulence remains a key issue that is not completely solved in fusion plasmas.This paper presents the first experimental results of the ab initio prediction of causal relation between geodesic acoustic mode(GAM)and ambient turbulence at different isotope masses in the edge of HL-2A tokamak,where transfer entropy method based on information-theoretical approach is utilized as a quantified indicator of causality.Analysis shows that GAM is more pronounced in deuterium plasmas than in hydrogen,leading to a lower heat transport as well as more peaked profiles in the former situation.The causal impact of GAM on conductive heat flux component is stronger than on the convective component,which is resulted from a larger causal influence of zonal flow on temperature fluctuation.While a stronger GAM in deuterium plasmas has larger influence on all flux components,the relative change in temperature fluctuation and coefficient is more obvious when the ion mass varies.These findings not only offer an in-depth understanding of the real causality between zonal flow and turbulence in the present isotope experiments,but also provide useful ways for the physical understandings of transport and zonal flow dynamics in future deuterium-tritium fusion plasmas.展开更多
The two-body fragmentation dynamics of water isotopologues dications(H_(2)O^(2+),HOD^(2+),and D_(2)O^(2+))induced by200 eV electron impact is investigated.Two fragment ions and an emitted electron are detected in coin...The two-body fragmentation dynamics of water isotopologues dications(H_(2)O^(2+),HOD^(2+),and D_(2)O^(2+))induced by200 eV electron impact is investigated.Two fragment ions and an emitted electron are detected in coincidence,and their momentum vectors are determined by employing a reaction microscope.The complete kinematical information of four two-body fragmentation channels of H^(+)+OH+,H^(+)+OD^(+),D^(+)+OH^(+),and D^(+)+OD+is obtained.By analyzing the projectile energy-loss spectrum,the initial electronic state of the two-body dissociation channel is determined.Upon examining the kinetic energy release(KER)distributions of the four fragmentation channels,a clear difference is found between the two-body fragmentation channel H^(+)+OD+and the other three channels.The isotopic effect in the two-body fragmentation is demonstrated by the analysis of the relative yields of the two-body fragmentation channels originating from different isotopologues,which shows preferential cleavage of the O-H bond over the O-D bond.These results provide deeper insight into the microscopic dynamic mechanisms in water radiolysis.展开更多
Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are p...Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window,which results in low energy density.In this perspective article,we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries.Specifically,we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte,which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes.展开更多
The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analy...The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.展开更多
Intermetallic clathrates are materials characterized by a large cage structure where vip atoms can move anharmonically,providing these materials exotic thermoelectric properties.Unfortunately,the dynamical and atomi...Intermetallic clathrates are materials characterized by a large cage structure where vip atoms can move anharmonically,providing these materials exotic thermoelectric properties.Unfortunately,the dynamical and atomic nature of the rattling phonons,and their interactions with the electronic structure,are not fully understood.Here,we report that a germanium isotope effect can trigger an inherent vip rattling and cage distortion in clathrate Ba8Ga16Ge30(BGG).Raman-scattering spectroscopy and advanced electron microscopy demonstrate that the atomic germanium isotope effect induces an offcentre rattling at the 6d sites as well as a tetrakaidecahedron deformation which is anisotropic for ntype BGG but isotropic for p-type BGG.The present findings indicate that the large n-type germanium isotope effect arises from the strong electron-phonon coupling,which opens up a novel avenue for manipulating dynamical motions of phonons via atomic isotope engineering.展开更多
Isotopic dependence of the Casimir force is key to probing new physics and pushing novel technologies at the micro and nanoscale, but is largely unexplored. In 2002, an isotope effect of 10^(-4) was estimated for met...Isotopic dependence of the Casimir force is key to probing new physics and pushing novel technologies at the micro and nanoscale, but is largely unexplored. In 2002, an isotope effect of 10^(-4) was estimated for metals—orders of magnitude beyond the experimental resolution. Here, by employing the Lifshitz theory, we reveal a significant isotope effect of over 10^(-1) for polar dielectrics. This effect arises from the isotope-mass-induced line shift of the zone-center optical phonons and is insensitive to the linewidth. We perform numerical analyses on both the imaginary and real-frequency axes, and derive analytical formulas for predicting the isotope effect. The three-orders-of-magnitude difference between polar dielectrics and metals arises from the distinct isotopic dependence of the phonon and plasma frequencies. Our work opens up a new avenue for engineering forces at small scales and may also facilitate the quest for the fifth force of nature.展开更多
基金suppor ted by Chinese NSF projects(42173021,41873024,42130114)the strategic priority research program(B)of CAS(XDB41000000)+1 种基金the preresearch Project on Civil Aerospace Technologies No.D020202 funded by the Chinese National Space Administration(CNSA)Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG)。
文摘Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.
文摘The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.
基金Project supported by the National Natural Science Foundation of China(Grant No.11004107)the Scientific Research Innovation Projects of Jiangsu Province for University Graduate Students,China(Grant No.CXZZ13 0201)
文摘The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.
文摘Theoretical studies of the dynamics of the reactions O(3p)+H2/HD(ν=0, j=0)→OH+H have been performed with quasi-classical trajectory method (QCT) on an ab initio potential surface for the lowest triplet electronic state of H2O(aA"). The QCT-calculated integral cross sections are in good agreement with the earlier time-dependent quantum mechanics results. The state-resolved rotational distributions reveal that the product OH rotational distributions for O+HD have a preference for populating highly internally excited states compared with the O+H2 reaction. Distributions of differential cross sections show that directions of scattering are strongly dependent on the choice of quantum state. The polarization dependent generalized differential cross-sections and the distributions were calculated and a pronounced isotopic effect is revealed. The calculated results indicate that the product polarization is very sensitive to the mass factor.
基金supported by the National Natural Sci-ence Foundation of China(No.21973098 and No.22133003)the Beijing National Laboratory for Molecular SciencesJianwei Cao acknowledges the Youth Innovation Promotion Association CAS(No.2018045).
文摘We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tun-neling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the avail-able experimental measurements.Strong isotope effects are revealed,the mode-specific funda-mental excitation effects on the tunneling rate are evidently influenced by the deuterium sub-stitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.
基金supported by the Natural Science Foundation of Anhui Education Bureau of Chinathe National Natural Science Foundation of China (Grant Nos 10676025 and 10574096)
文摘The anisotropic potential developed in our previous research and the close-coupling method are applied to the HBr-3He (4He, 5He, 6He, 7He) system, and the partial cross sections (PCSs) at the incident energy of 60meV are calculated. Based on the calculations, the influences of the isotope helium atom on PCSs are discussed in detail. The results show that the excitation PCSs converge faster than the elastic PCSs for the collision energy and the systems considered here. Also the excitation PCSs converge more rapidly for the high-excited states. The tail effect is present only in elastic scattering and low-exclted states but not in high-excited states. With the increase of reduced mass of the collision system, the converging speed of the elastic and excitation PCSs slows down, and the tail effect goes up.
文摘Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3p) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A′ and 3A″potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P(θr) and P(Фr) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3p) + H2 (v = 0, j = 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P(θr) and PDDCSs of the 3A′ PES while the opposite on P(Фr) of the 3A′ potential energy surface.
基金Supported by the National Natural Science Foundation of China(No.10874096)
文摘To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 21003062)
文摘Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P(0r), P(~r), and P(Or, Cr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j' is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574083)the Natural Science Foundation of Shandong Province of China (Grant No.Y2006A23)+1 种基金the National Basic Research Program of China (Grant No.2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)
文摘Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences between the reaction probabilities for J=0, integral cross sections for J≠0, branch ratios of the product and internuclear distances as well as product rotational alignments between the title reactions axe found. These differences are attributed mainly to the different reduced masses of the reactants and the different zero-point energies (ZPEs) of the transition state.
文摘Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The progress of the reaction was monitored spectrophotometrically by measuring the increasing absorbance of the reduced form of NADH at 340 nm. L-alanine, stereospecifically labeled with deuterium was synthesized by enzymatic reductive amination of pyruvate in presence of [(4R)-2H]-NADH, which was obtained by deuterium transfer from deuteriated formic acid to NAD~ catalyzed by FDH (formate dehydrogenase) (EC 1.2.1.2). [2-2H]-L-alanine, the product of enzymatic synthesis catalyzed by AIaDH, was obtained with 75% deuterium enrichment and values of isotopic effects were approximated to the values corresponding to 100% of deuterium incorporation. The enzyme AIaDH isolated from Bacillus subtilis shows pro-R stereospecificity, what indicates that hydrogen is exclusively transferred from pro-R position at C-4 of the nicotinamide ring of NADH to C-2 of pyruvate to form L-alanine. Some intrinsic mechanistic details of enzymatic oxidative deamination of L-alanine were discussed using determined numerical values of kinetic and solvent isotope effects on Vmax and Vmax,│KM
文摘The planar oxygen isotope effect on Tc observed in copper oxide superconductors is remarkable in that it increases from near nil at optimal doping to a value twice that derived from BCS theory in the underdoped region. This behavior is quantitatively followed by a formula proposed by Kresin and Wolf in 1994 for polarons along the c-axis. Herein it is revisited in a more transparent way, and it is pointed out that the heterogeneity of pairing is relevant and has to be taken into account to explain the unusual planar isotope effects on Tc in underdoped cuprates.
文摘This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical temperature is close to room temperature, specifically LaH<sub>10</sub>-LaD<sub>10</sub> and H<sub>3</sub>S-D<sub>3</sub>S systems. The Eliashberg-McMillan (EM) model and the recent Gor’kov-Kresin (GK) model for evaluating the isotope effects coefficient α were examined for these systems. The predicted values of α as a function of pressure, as compared to experimental values led to inference that these two models, despite their importance and simplicity, cannot be considered complete. These models can be used to calculate isotope effect of most superconducting materials with strong coupling coefficients but with critical reliability. The significance of studying the isotope effect lies in the possibility of identifying the interatomic forces that control the properties of superconducting materials such as electrons-mediated phonons and Coulomb interactions.
基金Simone Ciampi and Melanie Macgregor acknowledge support from the Australian Research Council(Grant Nos.DP220100553,FT190100148,and FT200100301)the instruments and expertise of Microscopy Australia at the Future Industries Institute,University of South Australia,enabled by NCRIS,university,and state government support.
文摘Triboelectric nanogenerators(TENGs)are advanced devices designed to harness mechanical energy from various sources such as vibrations,friction,or shear and convert it into electrical energy.Schottkybased tribovoltaic nanogenerators(TVNGs)are a type of TENG that incorporates a semiconductor-metal barrier,known as a Schottky barrier,into their design.This barrier aids in rectifying the generated electrical output,eliminating the need for external current rectification circuits.Further,silicon-based Schottky TVNGs can leverage existing surface functionalization procedures to improve device output and durability.Almost without exception,these procedures commence with an oxide-free and hydrogen-terminated silicon surface(Si-H).Replacing hydrogen with its heavier isotope deuterium(Si-D)does not hinder access to established surface chemistry procedures,and based on previous reports the isotope exchange is likely to improve resistance of the non-oxide semiconductor against its anodic decomposition.In this report we have developed the optimal surface chemistry procedures for preparing Si-D surfaces and explored to what extent this isotope effect translates into improved performances and durability of Schottky TVNGs.Our findings reveal that the maximum current output of TVNGs constructed on Si-D Si(111)crystals is comparable to that of mainstream Si-H devices.Additionally,we highlight a generally higher density of surface electrical defects in Si-D compared to Si-H,and verify the contribution of a flexoelectric term to the mechanic-to-electrical energy conversion mechanism.Ultimately,our experiments demonstrate that the primary advantage of replacing hydrogen with deuterium lies in enhancing device longevity.
基金supported by the National MCF Energy Research and Development Program(Grant Nos.2024YFE03190001,2024YFE03190004,2022YFE03030001,and 2019YFE03030002)the National Natural Science Foundation of China(Grant Nos.12405257,12475215,and 12475219)+2 种基金the Natural Science Foundation of Sichuan Province,China(Grant Nos.2023NSFSC1289 and 2025ZNSFSC0066)the Nuclear Technology Research and Development Program(Grant No.HJSYF2024(02))the Innovation Program of Southwestern Institute of Physics(Grant No.202301XWCX001)。
文摘The isotope effect on zonal flows(ZFs)and turbulence remains a key issue that is not completely solved in fusion plasmas.This paper presents the first experimental results of the ab initio prediction of causal relation between geodesic acoustic mode(GAM)and ambient turbulence at different isotope masses in the edge of HL-2A tokamak,where transfer entropy method based on information-theoretical approach is utilized as a quantified indicator of causality.Analysis shows that GAM is more pronounced in deuterium plasmas than in hydrogen,leading to a lower heat transport as well as more peaked profiles in the former situation.The causal impact of GAM on conductive heat flux component is stronger than on the convective component,which is resulted from a larger causal influence of zonal flow on temperature fluctuation.While a stronger GAM in deuterium plasmas has larger influence on all flux components,the relative change in temperature fluctuation and coefficient is more obvious when the ion mass varies.These findings not only offer an in-depth understanding of the real causality between zonal flow and turbulence in the present isotope experiments,but also provide useful ways for the physical understandings of transport and zonal flow dynamics in future deuterium-tritium fusion plasmas.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12325406,92261201,12404305,11974272)the Shannxi Province Natural Science Fundamental Research Project(Grant Nos.2023JC-XJ-03 and 23JSQ013)the Fundamental Research Funds for the Central Universities(Grant No.xzy022024040)。
文摘The two-body fragmentation dynamics of water isotopologues dications(H_(2)O^(2+),HOD^(2+),and D_(2)O^(2+))induced by200 eV electron impact is investigated.Two fragment ions and an emitted electron are detected in coincidence,and their momentum vectors are determined by employing a reaction microscope.The complete kinematical information of four two-body fragmentation channels of H^(+)+OH+,H^(+)+OD^(+),D^(+)+OH^(+),and D^(+)+OD+is obtained.By analyzing the projectile energy-loss spectrum,the initial electronic state of the two-body dissociation channel is determined.Upon examining the kinetic energy release(KER)distributions of the four fragmentation channels,a clear difference is found between the two-body fragmentation channel H^(+)+OD+and the other three channels.The isotopic effect in the two-body fragmentation is demonstrated by the analysis of the relative yields of the two-body fragmentation channels originating from different isotopologues,which shows preferential cleavage of the O-H bond over the O-D bond.These results provide deeper insight into the microscopic dynamic mechanisms in water radiolysis.
基金This work was supported by the National Key R&D Program of China(Grant No 2019YFA0705602)the Basic Science Center Project of National Natural Science Foundation of China(Grant No.51788104)+2 种基金the CAS Project for Young Scientists in Basic Research(Grant YSBR-058)the National Natural Science Foundation of China(Grant Nos.21975266,52172252 and 22209188)the Beijing Natural Science Foundation(Grant No.JQ22005).
文摘Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window,which results in low energy density.In this perspective article,we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries.Specifically,we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte,which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.91123009 and 10975115)the Natural Science Foundation of Fujian Province of China(Grant No.2012J06002)
文摘The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.
基金National Natural Science Foundation of China(NSFC)(grant no.11274234)R.A.thanks the financial supports from NSFC(grant no.51771126)+4 种基金Youth Foundation of Science&Technology Department of Sichuan Province(grant no.2016JQ0051)Sichuan University Talent Introduction Research Funding(grant no.YJ201537)Sichuan University Outstanding Young Scholars Research Funding(grant no.2015SCU04A20)P.R.and S.-F.W.acknowledge support from NSFC(grant nos.11274362 and 11674371)the Ministry of Science and Technology of China(grant nos.2015CB921000,2016YFA0401000 and 2016YFA0300300).J.T.thank Xiangjun Wei and Xiaolong Li for their useful discussion on PXRD data.
文摘Intermetallic clathrates are materials characterized by a large cage structure where vip atoms can move anharmonically,providing these materials exotic thermoelectric properties.Unfortunately,the dynamical and atomic nature of the rattling phonons,and their interactions with the electronic structure,are not fully understood.Here,we report that a germanium isotope effect can trigger an inherent vip rattling and cage distortion in clathrate Ba8Ga16Ge30(BGG).Raman-scattering spectroscopy and advanced electron microscopy demonstrate that the atomic germanium isotope effect induces an offcentre rattling at the 6d sites as well as a tetrakaidecahedron deformation which is anisotropic for ntype BGG but isotropic for p-type BGG.The present findings indicate that the large n-type germanium isotope effect arises from the strong electron-phonon coupling,which opens up a novel avenue for manipulating dynamical motions of phonons via atomic isotope engineering.
基金supported by the National Natural Science Foundation of China(Grant No.52076002)the Beijing Innovation Center for Engineering Science and Advanced Technology+1 种基金the XPLORER PRIZE from the Tencent Foundationthe High-performance Computing Platform of Peking University。
文摘Isotopic dependence of the Casimir force is key to probing new physics and pushing novel technologies at the micro and nanoscale, but is largely unexplored. In 2002, an isotope effect of 10^(-4) was estimated for metals—orders of magnitude beyond the experimental resolution. Here, by employing the Lifshitz theory, we reveal a significant isotope effect of over 10^(-1) for polar dielectrics. This effect arises from the isotope-mass-induced line shift of the zone-center optical phonons and is insensitive to the linewidth. We perform numerical analyses on both the imaginary and real-frequency axes, and derive analytical formulas for predicting the isotope effect. The three-orders-of-magnitude difference between polar dielectrics and metals arises from the distinct isotopic dependence of the phonon and plasma frequencies. Our work opens up a new avenue for engineering forces at small scales and may also facilitate the quest for the fifth force of nature.