Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits...Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits a number of interesting properties. However, there is no access to synthesizing well-defined polyisothiourea, and currently isothiourea-containing polymers are mainly prepared by immobilizing onto other polymer's side chain. Herein, we report the first facile synthesis of polyisothioureas via alternating copolymerization of aziridines and isothiocayanates. Mediated by the catalytic system of phosphazene superbases/alcohol, a broad scope of aziridines and isothiocayanates could be transformed into polyisothioureas with adjustable substitutions(11 examples). The structures of obtained polyisothioureas were fully characterized with ^(1)H-NMR, ^(13)C-NMR, and ^(1)H-^(13)C HMBC NMR. Moreover, the polyisothioureas show tunable thermal properties depending on substitutions on the isothiourea linkages. The novel structure of these polyisothioureas will enable a powerful platform for the discovery of nextgeneration functional plastics.展开更多
基金financially supported by the National Key R&D Program of China (No.2021YFA1501700)the Science and Technology Development Plan of Jilin Province (Nos.20230101042JC and 20210201059GX)+1 种基金Basic Science Center Program (No.51988102)the National Natural Science Foundation of China (Nos.52203017 and 52073272)。
文摘Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits a number of interesting properties. However, there is no access to synthesizing well-defined polyisothiourea, and currently isothiourea-containing polymers are mainly prepared by immobilizing onto other polymer's side chain. Herein, we report the first facile synthesis of polyisothioureas via alternating copolymerization of aziridines and isothiocayanates. Mediated by the catalytic system of phosphazene superbases/alcohol, a broad scope of aziridines and isothiocayanates could be transformed into polyisothioureas with adjustable substitutions(11 examples). The structures of obtained polyisothioureas were fully characterized with ^(1)H-NMR, ^(13)C-NMR, and ^(1)H-^(13)C HMBC NMR. Moreover, the polyisothioureas show tunable thermal properties depending on substitutions on the isothiourea linkages. The novel structure of these polyisothioureas will enable a powerful platform for the discovery of nextgeneration functional plastics.