期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect laws and mechanisms of different temperatures on isothermal tensile fracture morphologies of high-strength boron steel 被引量:2
1
作者 刘佳宁 宋燕利 +1 位作者 路珏 郭巍 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1191-1202,共12页
The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also an... The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation(CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations; thus, to obtain full martensite, a higher cooling rate is needed; and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C. 展开更多
关键词 high-strength boron steel fracture morphology isothermal tensile test
在线阅读 下载PDF
Superplastic deformation of commercial OOCr22Ni5Mo3N0.17 duplex stainless steel 被引量:1
2
作者 Peixue Zhang, Xueping Ren, and Jianxin XieMaterials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期49-55,共7页
The superplastic behavior of a commercial duplex stainless steel has beenstudied by means of isothermal hot tensile test at temperatures of 850-1050 deg C for the initialstrain rates ranging from 3X10^(-4) s^(-1) to 5... The superplastic behavior of a commercial duplex stainless steel has beenstudied by means of isothermal hot tensile test at temperatures of 850-1050 deg C for the initialstrain rates ranging from 3X10^(-4) s^(-1) to 5X10^(-2) s^(-1). At 960 deg C, the best superplasticdeformation that caused the maximum elongation greater than 840 percent was obtained for an initialstrain rate of 1.2X10^(-3) s^(-1). At 850 deg C, the best elongation 500 percent was achieved for aninitial strain rate of 2.5X10^(-3) s^(-1) During the deformation in higher temperature region,coarse gamma grains formed during the prior treatments were broken into spherical particles,resulting in a homogeneous dispersion of gamma particles within the delta-ferrite matrix. However,at lower temperatures between 800 and 950 deg C, the sigma phase was formed through the eutectoiddecomposition of delta->gamma+sigma, resulting finally in the stable equiaxed micro-duplexstructures with delta/gamma and gamma/sigma respectively. The precipitation of the sigma phaseplayed an important role in improving the superplasticity at 850 deg C. The strain-rate sensitivitycoefficient, m-values, were also determined by the strain rate change tests. The microstructurestudies show that the superplastic process occurs mainly by the local work hardening and thesubsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism. 展开更多
关键词 duplex stainless steel SUPERPLASTICITY strain-rate sensitivitycoefficient isothermal hot tensile test
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部