Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermo...Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermodynamic parameters, the standard molar Gibbs free energy change, the standard molar enthalpy change and the standard molar entropy change, of isothermal adsorption processes for Freundlich andTemkin isotherm models were deduced according to the relationship between the thermodynamic equilibriumconstats and the temperature.展开更多
A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by consideri...A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.展开更多
Naphthenic acids,NAs,are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters,OSPW.Using activated carbon adsorbents are an attractive option given their l...Naphthenic acids,NAs,are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters,OSPW.Using activated carbon adsorbents are an attractive option given their low cost of fabrication and implementation.A deeper evaluation of the effect NA structural differences have on uptake affinity is warranted.Here we provide an in-depth exploration of NA adsorption including many more model NA species than have been assessed previously with evaluation of adsorption kinetics and isotherms at the relevant alkaline pH of OSPW using several different carbon adsorbents with pH buffering to simulate the behaviour of real OSPW.Uptake for the NA varied considerably regardless of the activated carbon used,ranging from 350 mg/g to near zero highlighting recalcitrant NAs.The equilibrium data was explored to identify structural features of these species and key physiochemical properties that influence adsorption.We found that certainNAwill be resistant to adsorptionwhen hydrophobic adsorbents are used.Adsorption isotherm modelling helped explore interactions occurring at the interface between NA and adsorbent surfaces.We identified the importance of NA hydrophobicity for activated carbon uptake.Evidence is also presented that indicates favorable hydrogen bonding between certain NA and surface site hydroxyl groups,demonstrating the importance of adsorbent surface functionality for NA uptake.This research highlights the challenges associated with removing NAs from OSPW through adsorption and also identifies howadsorbent surface chemistry modification can be used to increase the removal efficiency of recalcitrant NA species.展开更多
Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s^-l and a maximum strain of ...Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s^-l and a maximum strain of 0.8. The experimental results show that the flow stress increases with the decrease in the deformation temperature and the increase in the strain rate. The apparent activation energy for deformation is much lower at lower strain rates than that at higher strain rates. The flow stress model considering strain compensation was established. The average relative error between the calculated flow stress and experimental results is about 7.69%, indicating that the present model could be used to accurately predict the flow stress during high temperature in α+β phase field of TC4 alloy.展开更多
A new phase field method for two-dimensional simulations of binary alloy solidification was studied. A model basing on solute conservative in every unit was developed for solving the solute diffusion equation during s...A new phase field method for two-dimensional simulations of binary alloy solidification was studied. A model basing on solute conservative in every unit was developed for solving the solute diffusion equation during solidification. Two-dimensional computations were performed for ideal solutions and Ni-Cu dendritic growth into an isothermal and highly supersaturated liquid phase.展开更多
Fluid flow and mixing of molten steel in a twin-slab-strand continuous casting tundish were investigated using a mixing model under non-isothermal conditions.This model led to a set of ordinary differential equations ...Fluid flow and mixing of molten steel in a twin-slab-strand continuous casting tundish were investigated using a mixing model under non-isothermal conditions.This model led to a set of ordinary differential equations that were solved with a Runge-Kutta algorithm.Steady state water modeling was carried out under non-isothermal conditions.Experimental data obtained from the water model were used to calibrate the mixing model.Owing to the presence of a mixed convection in the non-isothermal conditions,a channelizing flow would be created in the fluid inside the tundish.A mixing model was designed that was capable of predicting RTD(residence time distribution)curves for different cases in non-isothermal conditions.The relationship between RTD parameters and the Tu(tundish Richardson number)was obtained for various cases under non-isothermal conditions.The results show that the RTD parameters were completely different under isothermal and non-isothermal conditions.The comparison of the RTD curves between the isothermal and non-isothermal conditions presents that the extent of mixing in the tundish in non-isothermal conditions is lower than the mixing extent in isothermal conditions.展开更多
Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No....Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.展开更多
In this work, the non-isothermal dissolution kinetics of the sigma phase in duplex stainless steels has been studied and modelled. A semi-empirical model is proposed to describe the kinetics of sigma phase precipitati...In this work, the non-isothermal dissolution kinetics of the sigma phase in duplex stainless steels has been studied and modelled. A semi-empirical model is proposed to describe the kinetics of sigma phase precipitation/dissolution during continuous heating starting from the isothermal transformation kinetics. The proposed model, which presumes validity of the additivity rule, is validated by means of experimental investigations. A good agreement is found between experimental and analytical results.展开更多
Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring r...Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.展开更多
Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better ...Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively.展开更多
The aim of study is to investigate the removal ability of some natural adsorbents for fluoride ion from aqueous solution. The batch dynamic adsorption method was carried out at neutral pH as the functions of contact t...The aim of study is to investigate the removal ability of some natural adsorbents for fluoride ion from aqueous solution. The batch dynamic adsorption method was carried out at neutral pH as the functions of contact time, adsorbent dose, adsorbate concentration, temperature and effect of co-anions, which are commonly present in water. The sorption kinetics and equilibrium adsorption isotherms of fluoride on natural adsorbing materials had been investigated at afore-mentioned optimized. Equilibrium adsorption isotherms, viz., Freundlich and Langmuir isotherms were investigated. Lagergren and Morris-Weber kinetic equations were employed to find the rate constants. The negative enthalpy ΔH = -46.54 KJ·mol-1 and Gibbs free energy calculated was ΔG288-333—(2.07785, 3.08966, 4.1064, 4.90716 and 5.38036 KJ·mol-1) respectively, envisage exothermic and spontaneous nature of sorption.展开更多
During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe ef...During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.展开更多
This paper is devoted to weak solutions of Cauchy problem to the isothermal bipolar hydrodynamic model with large data. The model takes the bipolar Euler-Poisson form, with electric field and relaxation terms added to...This paper is devoted to weak solutions of Cauchy problem to the isothermal bipolar hydrodynamic model with large data. The model takes the bipolar Euler-Poisson form, with electric field and relaxation terms added to the momentum equations. Using Glimm scheme to the hyperbolic part and the standard theory to the ordinary differential equations, we first construct the approximation solutions, then from the facts that the total charge is quasi-conservation, we can obtain a uniform estimate of the total variation of the electric field, which allows to prove the L∞ estimate of densities and velocities, and the convergence of the scheme. Then we can prove the global existence of weal solution to Cauchy problem with large data.展开更多
Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC comp...Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC composites. Convection in preform was neglected in one model where momentum transport in preform is neglected and mass transport in preform is dominated by diffusion. Whereas convection in preform was taken into account in the other model where momentum transport in preform is represented by BRINKMAN equations and mass transport in preform includes both diffusion and convection. The integrated models were solved by finite element method. The calculation results show that convection in preform have negligible effect on both velocity distribution and concentration distribution. The difference between MTS molarities in preform of the two models is less than 5×10-5, which indicates that ignorance of convection in preform is reasonable and acceptable for numerical simulation of ICVI process of C/SiC composites.展开更多
The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six...The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3 mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms.展开更多
The aim of present study is to synthesize forsterite nanoparticles(FRST) for the reclamation of cerium ions(Ce3+) from synthetic wastewater.The aim to synthesize FRST nanoparticles is due to its biocompatible and...The aim of present study is to synthesize forsterite nanoparticles(FRST) for the reclamation of cerium ions(Ce3+) from synthetic wastewater.The aim to synthesize FRST nanoparticles is due to its biocompatible and nontoxic nature.The formation of nanoparticles with average diameter of 58 nm was confirmed by TEM analysis.SEM images of bare FRST nanoparticles show a heterogeneous surface with porous nature.BET surface area of FRST nanoparticles is calculated to be 33.69 m2/g.The significant uptake of Ce3+ ions can be obtained for all the selected concentrations(25-150 mg/L) within 2 h of adsorbent—adsorbate interaction.The pH study shows that by increasing pH from acidic to alkaline range,higher removal can be achieved.Temperature study demonstrates the endothermic nature of Ce3+adsorption.The value of sticking probability suggests very high sticking probability of Ce3+ ion for FRST nanoparticles.Ce3+ uptake is favored by higher temperature and with the increase in temperature from298 to 328 K,Langmuir adsorption capacity increases from 36.45 to 42.99 m2/g.Applicability of FRST nanoparticles was also investigated for other light and heavy rare earth elements in single solute and multisolute systems,FRST nanoparticles show the significant removal of divalent metallic pollutants as well.The assessment of chemical toxicity of treated wastewater was carried out with the bioluminescent photobacterium(Vibrio fischeri) and decreased toxicity was observed in treated water samples.The outcome of present study suggests that the FRST nanoparticles can be efficiently utilized for the removal of Ce3+ ions and a wide range of other pollutant species as well.展开更多
In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures...In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures,and concentrations.Adsorption isotherms and equilibrium adsorption capacities were determined by the fittings of the experimental data to three well-known iso-therm models:Langmuir,Freundlich,and Redlich-Peterson.The results showed that the Langmuir and Redlich-Peterson models appear to fit the adsorption better than did the Freundlich adsorption model for the adsorption of chromium onto humic acid.The equilibrium constants were used to calculate thermodynamic parameters such as the change of free energy,enthalpy,and entropy.The derived adsorption constants (logaL) and their temperature dependencies from Langmuir isotherm have been used to calculate the corresponding thermodynamic quantities such as the free energy of adsorption,heat,and entropy of adsorption.The thermo-dynamic data indicate that Cr (VI) adsorption onto humic acid is entropically driven and characterized by physical adsorption.展开更多
Adsorption is one of the several techniques that has been successfully used for dyes removal.Since most industrial colored effluents contain several components including dyes,having a strong knowledge about the scope ...Adsorption is one of the several techniques that has been successfully used for dyes removal.Since most industrial colored effluents contain several components including dyes,having a strong knowledge about the scope of competitive adsorption process is a powerful key to design an appropriate system.This is mainly because of the complexity brought about by the increasing number of parameters needed for process description which complicates not only the process modeling but also the experimental data collection.A multicomponent adsorption model should be based on fundamental soundness,speed,and simplicity of calculation.For such systems,competition will change the adsorbent-adsorbate attractions.Thus,there is major concern to develop an accurate and reliable method to predict dye adsorption behavior in multi-component systems.This article covers topics such as the theory of dyes adsorption in multi-component systems along with applicable models according to the consistent theories presented by researchers.展开更多
First, the date palm kernel is used to produce granular activated carbon (GAC) by a physiochemical activation process. The process involves six steps: washing, drying, crushing, sieving, carbonization, and activati...First, the date palm kernel is used to produce granular activated carbon (GAC) by a physiochemical activation process. The process involves six steps: washing, drying, crushing, sieving, carbonization, and activation. Secondly, the ability of the produced GAC to remove pollutants is examined through batch experiments of residual chlorine adsorption whereas the equilibrium isotherm experimental data are tested for the Langmuir and Freundlich isotherms equations. Thirdly, the experimental and theoretical study of dynamic adsorption process and the effect of major operating parameters on dynamic adsorption are investigated. The results show that the Langmuir isotherm gives the best fitting to experimental data, which indicates that the residual chlorine adsorption can be characterized by mono layer adsorption behavior. The produced GAC has a great potential as an adsorbent for residual chlorine in water systems and it can compete favorably with the conventional adsorbents. The Thomas extended model with combined mass transfer resistances is used for verifying the experimental results and the results show that the proposed model coincides well with the experimental data of the dynamic adsorption process.展开更多
It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to pe...It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.展开更多
文摘Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermodynamic parameters, the standard molar Gibbs free energy change, the standard molar enthalpy change and the standard molar entropy change, of isothermal adsorption processes for Freundlich andTemkin isotherm models were deduced according to the relationship between the thermodynamic equilibriumconstats and the temperature.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0749)
文摘A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.
文摘Naphthenic acids,NAs,are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters,OSPW.Using activated carbon adsorbents are an attractive option given their low cost of fabrication and implementation.A deeper evaluation of the effect NA structural differences have on uptake affinity is warranted.Here we provide an in-depth exploration of NA adsorption including many more model NA species than have been assessed previously with evaluation of adsorption kinetics and isotherms at the relevant alkaline pH of OSPW using several different carbon adsorbents with pH buffering to simulate the behaviour of real OSPW.Uptake for the NA varied considerably regardless of the activated carbon used,ranging from 350 mg/g to near zero highlighting recalcitrant NAs.The equilibrium data was explored to identify structural features of these species and key physiochemical properties that influence adsorption.We found that certainNAwill be resistant to adsorptionwhen hydrophobic adsorbents are used.Adsorption isotherm modelling helped explore interactions occurring at the interface between NA and adsorbent surfaces.We identified the importance of NA hydrophobicity for activated carbon uptake.Evidence is also presented that indicates favorable hydrogen bonding between certain NA and surface site hydroxyl groups,demonstrating the importance of adsorbent surface functionality for NA uptake.This research highlights the challenges associated with removing NAs from OSPW through adsorption and also identifies howadsorbent surface chemistry modification can be used to increase the removal efficiency of recalcitrant NA species.
基金financially supported by China Postdoctoral Science Foundation (No. 2017M610649)Fundamental Research Funds for the Central Universities (No. 3102017zy001)
文摘Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s^-l and a maximum strain of 0.8. The experimental results show that the flow stress increases with the decrease in the deformation temperature and the increase in the strain rate. The apparent activation energy for deformation is much lower at lower strain rates than that at higher strain rates. The flow stress model considering strain compensation was established. The average relative error between the calculated flow stress and experimental results is about 7.69%, indicating that the present model could be used to accurately predict the flow stress during high temperature in α+β phase field of TC4 alloy.
基金the National Natural Science Foundation of China financially(Grant No.10176009)
文摘A new phase field method for two-dimensional simulations of binary alloy solidification was studied. A model basing on solute conservative in every unit was developed for solving the solute diffusion equation during solidification. Two-dimensional computations were performed for ideal solutions and Ni-Cu dendritic growth into an isothermal and highly supersaturated liquid phase.
文摘Fluid flow and mixing of molten steel in a twin-slab-strand continuous casting tundish were investigated using a mixing model under non-isothermal conditions.This model led to a set of ordinary differential equations that were solved with a Runge-Kutta algorithm.Steady state water modeling was carried out under non-isothermal conditions.Experimental data obtained from the water model were used to calibrate the mixing model.Owing to the presence of a mixed convection in the non-isothermal conditions,a channelizing flow would be created in the fluid inside the tundish.A mixing model was designed that was capable of predicting RTD(residence time distribution)curves for different cases in non-isothermal conditions.The relationship between RTD parameters and the Tu(tundish Richardson number)was obtained for various cases under non-isothermal conditions.The results show that the RTD parameters were completely different under isothermal and non-isothermal conditions.The comparison of the RTD curves between the isothermal and non-isothermal conditions presents that the extent of mixing in the tundish in non-isothermal conditions is lower than the mixing extent in isothermal conditions.
基金the National Basic Research Program of China (No.2005CB221503)the Major Program of the National Natural Science Foundation (Nos.70533050 and 50674089) for their support of this project
文摘Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.
文摘In this work, the non-isothermal dissolution kinetics of the sigma phase in duplex stainless steels has been studied and modelled. A semi-empirical model is proposed to describe the kinetics of sigma phase precipitation/dissolution during continuous heating starting from the isothermal transformation kinetics. The proposed model, which presumes validity of the additivity rule, is validated by means of experimental investigations. A good agreement is found between experimental and analytical results.
基金supported by the project of China National 973 Program"Basic Research on Enrichment Mechanism and Improving the Exploitation Efficiency of Coalbed Methane Reservoir"(Grant No. 2009CB219600)the National Natural Science Foundation of China(Grant No.40672100)
文摘Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.
基金Item Sponsored by National Basic Research Program(973Program)of China(2012CB720401)National Key Technology Research and Development Program in the 12th Five-year Plan of China(2011BAC01B02)
文摘Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively.
文摘The aim of study is to investigate the removal ability of some natural adsorbents for fluoride ion from aqueous solution. The batch dynamic adsorption method was carried out at neutral pH as the functions of contact time, adsorbent dose, adsorbate concentration, temperature and effect of co-anions, which are commonly present in water. The sorption kinetics and equilibrium adsorption isotherms of fluoride on natural adsorbing materials had been investigated at afore-mentioned optimized. Equilibrium adsorption isotherms, viz., Freundlich and Langmuir isotherms were investigated. Lagergren and Morris-Weber kinetic equations were employed to find the rate constants. The negative enthalpy ΔH = -46.54 KJ·mol-1 and Gibbs free energy calculated was ΔG288-333—(2.07785, 3.08966, 4.1064, 4.90716 and 5.38036 KJ·mol-1) respectively, envisage exothermic and spontaneous nature of sorption.
基金financially supported by the National Key R&D Program of China (Nos. 2017YFB0703001 and 2017YFB0305100)the National Natural Science Foundation of China (Nos. 51134011, 51431008, 51790483 and 51801157)+4 种基金the Fundamental Research Funds for the Central Universities (No. 3102017zy064)the Research Fund of the State Key Laboratory of Solidification Processing (Nos. 117-TZ-2015, 159-QP-2016)the Analytical & Testing Center of Northwestern Polytechnical University for Equipment Supportfinancial support from the Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical Universitythe China Scholarship Council (CSC) Scholarship
文摘During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.
基金Supported by the National Natural Science Foundation of China(11171223)
文摘This paper is devoted to weak solutions of Cauchy problem to the isothermal bipolar hydrodynamic model with large data. The model takes the bipolar Euler-Poisson form, with electric field and relaxation terms added to the momentum equations. Using Glimm scheme to the hyperbolic part and the standard theory to the ordinary differential equations, we first construct the approximation solutions, then from the facts that the total charge is quasi-conservation, we can obtain a uniform estimate of the total variation of the electric field, which allows to prove the L∞ estimate of densities and velocities, and the convergence of the scheme. Then we can prove the global existence of weal solution to Cauchy problem with large data.
基金Project(90405015) supported by the National Natural Science Foundation of China Project(50425208) supported by the National Young Elitists Foundation of China Project([2005]33) supported by Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC composites. Convection in preform was neglected in one model where momentum transport in preform is neglected and mass transport in preform is dominated by diffusion. Whereas convection in preform was taken into account in the other model where momentum transport in preform is represented by BRINKMAN equations and mass transport in preform includes both diffusion and convection. The integrated models were solved by finite element method. The calculation results show that convection in preform have negligible effect on both velocity distribution and concentration distribution. The difference between MTS molarities in preform of the two models is less than 5×10-5, which indicates that ignorance of convection in preform is reasonable and acceptable for numerical simulation of ICVI process of C/SiC composites.
基金supported by the National Natural Science Foundation of China(Nos.51290284,and 21477059)the Tsinghua University Initiative Scientific Research Program(No.20131089247)the National Water Major Project(No.2015ZX07 402-002)
文摘The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3 mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms.
基金Project supported by the Regional Council of South-Savo and the City of Mikkeli,Finland
文摘The aim of present study is to synthesize forsterite nanoparticles(FRST) for the reclamation of cerium ions(Ce3+) from synthetic wastewater.The aim to synthesize FRST nanoparticles is due to its biocompatible and nontoxic nature.The formation of nanoparticles with average diameter of 58 nm was confirmed by TEM analysis.SEM images of bare FRST nanoparticles show a heterogeneous surface with porous nature.BET surface area of FRST nanoparticles is calculated to be 33.69 m2/g.The significant uptake of Ce3+ ions can be obtained for all the selected concentrations(25-150 mg/L) within 2 h of adsorbent—adsorbate interaction.The pH study shows that by increasing pH from acidic to alkaline range,higher removal can be achieved.Temperature study demonstrates the endothermic nature of Ce3+adsorption.The value of sticking probability suggests very high sticking probability of Ce3+ ion for FRST nanoparticles.Ce3+ uptake is favored by higher temperature and with the increase in temperature from298 to 328 K,Langmuir adsorption capacity increases from 36.45 to 42.99 m2/g.Applicability of FRST nanoparticles was also investigated for other light and heavy rare earth elements in single solute and multisolute systems,FRST nanoparticles show the significant removal of divalent metallic pollutants as well.The assessment of chemical toxicity of treated wastewater was carried out with the bioluminescent photobacterium(Vibrio fischeri) and decreased toxicity was observed in treated water samples.The outcome of present study suggests that the FRST nanoparticles can be efficiently utilized for the removal of Ce3+ ions and a wide range of other pollutant species as well.
基金supported by the National Key Technologies R&D Program in the 10th Five-year Plan (2004BA901A15)the Key Program of National Natural Science Foundation of China (Grant No.90702001)
文摘In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures,and concentrations.Adsorption isotherms and equilibrium adsorption capacities were determined by the fittings of the experimental data to three well-known iso-therm models:Langmuir,Freundlich,and Redlich-Peterson.The results showed that the Langmuir and Redlich-Peterson models appear to fit the adsorption better than did the Freundlich adsorption model for the adsorption of chromium onto humic acid.The equilibrium constants were used to calculate thermodynamic parameters such as the change of free energy,enthalpy,and entropy.The derived adsorption constants (logaL) and their temperature dependencies from Langmuir isotherm have been used to calculate the corresponding thermodynamic quantities such as the free energy of adsorption,heat,and entropy of adsorption.The thermo-dynamic data indicate that Cr (VI) adsorption onto humic acid is entropically driven and characterized by physical adsorption.
文摘Adsorption is one of the several techniques that has been successfully used for dyes removal.Since most industrial colored effluents contain several components including dyes,having a strong knowledge about the scope of competitive adsorption process is a powerful key to design an appropriate system.This is mainly because of the complexity brought about by the increasing number of parameters needed for process description which complicates not only the process modeling but also the experimental data collection.A multicomponent adsorption model should be based on fundamental soundness,speed,and simplicity of calculation.For such systems,competition will change the adsorbent-adsorbate attractions.Thus,there is major concern to develop an accurate and reliable method to predict dye adsorption behavior in multi-component systems.This article covers topics such as the theory of dyes adsorption in multi-component systems along with applicable models according to the consistent theories presented by researchers.
基金The National Natural Science Foundation of China(No. 51078074)
文摘First, the date palm kernel is used to produce granular activated carbon (GAC) by a physiochemical activation process. The process involves six steps: washing, drying, crushing, sieving, carbonization, and activation. Secondly, the ability of the produced GAC to remove pollutants is examined through batch experiments of residual chlorine adsorption whereas the equilibrium isotherm experimental data are tested for the Langmuir and Freundlich isotherms equations. Thirdly, the experimental and theoretical study of dynamic adsorption process and the effect of major operating parameters on dynamic adsorption are investigated. The results show that the Langmuir isotherm gives the best fitting to experimental data, which indicates that the residual chlorine adsorption can be characterized by mono layer adsorption behavior. The produced GAC has a great potential as an adsorbent for residual chlorine in water systems and it can compete favorably with the conventional adsorbents. The Thomas extended model with combined mass transfer resistances is used for verifying the experimental results and the results show that the proposed model coincides well with the experimental data of the dynamic adsorption process.
基金supported by Liaoning Provincial Natural Science Foundation of China(201202028)the National Program on the Key Basic Research Project(No.2011CB707304)+1 种基金the National Natural Science Foundation of China(No.51006016)the China Scholarship Council
文摘It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.