期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy 被引量:2
1
作者 X.W.Shang Z.G.Lu +1 位作者 R.P.Guo L.Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期627-641,共15页
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep... Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 展开更多
关键词 Powder metallurgy Hot isostatic pressing Titanium alloy Mechanical properties Microstructure evolution
原文传递
Improving mechanical properties of extrusion additive manufacturing WC-9Co cemented carbide via green warm isostatic pressing 被引量:1
2
作者 Cai CHEN Run-xing ZHOU +4 位作者 Zu-ming LIU Yong-xia LI Dan ZOU Yi-ming CHANG Xu-lin CHENG 《Transactions of Nonferrous Metals Society of China》 2025年第3期902-920,共19页
To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,t... To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides. 展开更多
关键词 material extrusion additive manufacturing WC-Co cemented carbide warm isostatic pressing DEFECT microstructure mechanical properties
在线阅读 下载PDF
Effects of Thermal Aging on Microstructure and Mechanical Properties of Interface of Hot Isostatic Pressing Densified Low Alloy Steel with Inconel 690 Cladding
3
作者 Yu Lei Cao Rui +3 位作者 Ma Jinyuan Yan Yingjie Dong Hao Wang Caiqin 《稀有金属材料与工程》 北大核心 2025年第4期879-885,共7页
The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results s... The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation. 展开更多
关键词 INTERFACE thermal aging microstructure mechanical properties hot isostatic pressing densification
原文传递
Hot Isostatic Pressing for Enhancing Mechanical Properties of Mo Alloys Prepared by Laser Powder Bed Fusion
4
作者 Liang Xunwen Fu Zhongxue +3 位作者 Zhang Shiming Che Yusi Cheng Pengming Wang Pei 《稀有金属材料与工程》 北大核心 2025年第3期587-592,共6页
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.... To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys. 展开更多
关键词 Mo alloys hot isostatic pressing laser powder bed fusion mechanical properties
原文传递
Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing
5
作者 Zheng Liu De-Chun Ren +3 位作者 Lian-Min Zhang Ai-Li Ma Hai-Bin Ji Yu-Gui Zheng 《Acta Metallurgica Sinica(English Letters)》 2025年第1期102-106,共5页
Laser powder bed fusion(LPBF)technology offers a promising solution to the fabricability challenges of titanium alloys;however,it introduces defects such as porosity and cracking.Here,we evaluated the effectiveness of... Laser powder bed fusion(LPBF)technology offers a promising solution to the fabricability challenges of titanium alloys;however,it introduces defects such as porosity and cracking.Here,we evaluated the effectiveness of hot isostatic pressing(HIP)in eliminating defects and enhancing the overall properties of LPBF Ti-6Al-4V alloy.Our findings indicated that LPBF Ti-6Al-4V alloy after HIP established better corrosion resistance and ductility.These improvements could be related to the decomposition ofαʹphase and the elimination of internal defects within alloy matrix.Furthermore,the application prospect of LPBF Ti-6Al-4V alloy in spent fuel reprocessing environment was expounded. 展开更多
关键词 Laser powder bed fusion TI-6AL-4V Hot isostatic pressing Corrosion Mechanical properties
原文传递
Tensile Properties of Electrochemically Hydrogenated As‑Built, Hot Isostatic Pressed and Heat‑Treated Electron Beam Melted Ti–6Al–4V Alloys
6
作者 Noa Lulu‑Bitton Nissim U.Navi Noam Eliaz 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1711-1718,共8页
Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed... Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed fusion.Furthermore,the efects of either hot isostatic pressing(HIP)or heat treatment(HT)post-treatments on the mechanical properties were not reported.Here,the Young’s modulus,ultimate tensile stress,and uniform(homogeneous)strain of as-built electron beam melted(EBM)Ti–6Al–4V alloys were studied using small tensile specimens before and after electrochemical hydrogenation,as well as before and after secondary processes of HIP at 920℃ and HT at 1000℃.The tensile properties of all hydrogenated alloys were signifcantly degraded compared to their non-hydrogenated counterparts.The yield stress could not be determined for all hydrogenated alloys,as failure occurred at a strain below 0.2%ofset.The uniform strain of the hydrogenated alloys was less than 1%,compared to 1%–5%for the non-hydrogenated alloys.The fracture mode of the hydrogenated alloys after HIP and HT revealed cleavage fracture,indicating increased brittleness.In the as-built hydrogenated alloy,the fracture mode varied with location:brittle fracture occurred near the surface due to the formation of a hydride layer,while a more ductile fracture with dimples was observed below this layer. 展开更多
关键词 Additive manufacturing(AM) TI-6AL-4V Electron Beam Melting(EBM) Heat treatment(HT) Hot isostatic pressing(HIP) Hydrogen embrittlement(HE) Small tensile specimen Tensile properties
原文传递
Plastic forming simulations of cold isostatic pressing of selective laser sintered components 被引量:2
7
作者 杜艳迎 史玉升 魏青松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1118-1122,共5页
A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost... A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost. The simulations of CIP of selective laser sintered parts were carried out by Drucker-Prager-Cap constitutive model with ABAQUS computer program. The property of metal powder was measured by CIP experiments. The results show the rubber bag and the friction coefficient have little influence on results of simulations. The parts only have uniform shrinkage and have no obvious distortion in shape. The results of simulations show a good agreement with the experimental results and the calculated results, indicating that the Drucker-Prager-Cap model is an effective model to simulate CIP process. The simulations could give a useful direction to forming process of the CIP of selective laser sintered components. K 展开更多
关键词 cold isostatic pressing stainless steel plastic forming SIMULATION
在线阅读 下载PDF
Effect of Hot Isostatic Pressing Conditions and Cooling Rate on Microstructure and Properties of Ti-6Al-4V Alloy from Atomized Powder 被引量:28
8
作者 Lei Xu Ruipeng Guo +2 位作者 Chunguang Bai Jiafeng Lei Rui Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第12期1289-1295,共7页
The effects of temperature and pressure on density, microstructure and mechanical properties of powder compacts during hot isostatic pressing(HIPping) were investigated. Optimized HIPping parameters of temperature r... The effects of temperature and pressure on density, microstructure and mechanical properties of powder compacts during hot isostatic pressing(HIPping) were investigated. Optimized HIPping parameters of temperature range from 900 to 940℃, pressure over 100 MPa and holding time of 3 h, were obtained. Tensile properties after different heat treatments show that both the geometry of samples and cooling rate have a significant influence on mechanical properties. Finite element method was used to predict the temperature field distribution during HIPped sample cooling, and the experimental results are in agreement with simulation prediction. The interaction of HIPping parameters was analyzed based on the response surface methodology(RSM) in this study. 展开更多
关键词 Hot isostatic pressing TI-6AL-4V Cooling rate Microstructure Mechanical properties
原文传递
Enhanced tensile properties in a Mg-6Gd-3Y-0.5Zr alloy due to hot isostatic pressing(HIP) 被引量:10
9
作者 B. Zhoua D.Wu +1 位作者 R.S.Chen En-hou Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期1860-1868,共9页
Hot isostatic pressing (HIP) was applied to Mg-6Gd-3Y-0.5Zr (GW63) alloy to reduce shrinkage porosity, thus, to enhance the integrity and reliability of castings. During HIP process, shrinkage porosity was closed by g... Hot isostatic pressing (HIP) was applied to Mg-6Gd-3Y-0.5Zr (GW63) alloy to reduce shrinkage porosity, thus, to enhance the integrity and reliability of castings. During HIP process, shrinkage porosity was closed by grain compatible deformation and subsequent diffusion across the bonding interface. The amount of initial shrinkage porosity was the key factor for shrinkage porosity closure. HIP was testified to be effective on shrinkage porosity reduction in GW63 alloy due to its relatively narrow solidification range and resultant low content of initial shrinkage porosity in most sections, leading to higher tensile properties both in as-cast and cast-T6 condition. The improvement in tensile properties was mainly because of shrinkage porosity reduction and resultant effective rare-earth (RE) elements homogenization and precipitation strengthening. 展开更多
关键词 Hot isostatic PRESSING MG-GD-Y-ZR SHRINKAGE POROSITY reduction TENSILE properties
原文传递
Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti_2AlNb Alloys 被引量:16
10
作者 Jie wu Ruipeng Guo +3 位作者 Lei Xu Zhengguan Lu Yuyou Cui Rui Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第2期172-178,共7页
In this work, hot isostatic pressing (HIPing) technique was used to densify the Ti2AINb pre-alloyed powder. The influence of HIPing loading route parameters (temperature and rates of heating and pressurizing) on m... In this work, hot isostatic pressing (HIPing) technique was used to densify the Ti2AINb pre-alloyed powder. The influence of HIPing loading route parameters (temperature and rates of heating and pressurizing) on microstructure and properties of PM Ti2AINb alloys was studied. The results showed that HIPing loading route parameters affected the densification process and mechanical properties (especially high temper- ature rupture lifetime) of PM Ti2AINb alloys in the present work. A finite element method (FEM) model for predicting the final densification was developed and was used to optimize the HIPing procedure. 展开更多
关键词 Ti-22Al-24Nb-0.5Mo alloy Hot isostatic pressing POROSITY Non-uniform densification Rupture lifetime
原文传递
Powder Size Influence on Tensile Properties and Porosity for PM Ti2AlNb Alloy Prepared by Hot Isostatic Pressing 被引量:7
11
作者 Zheng-Guan Lu Jie Wu +1 位作者 Lei Xu Rui Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第11期1329-1336,共8页
Pre-alloyed powder of Ti2AlNb alloy was prepared by electrode induction gas atomization method, and the powder was screened into fi ve kinds of powder size distribution. Fully dense Ti2AlNb alloy was prepared by powde... Pre-alloyed powder of Ti2AlNb alloy was prepared by electrode induction gas atomization method, and the powder was screened into fi ve kinds of powder size distribution. Fully dense Ti2AlNb alloy was prepared by powder metallurgy(PM) using hot isostatic pressing. The properties of pre-alloyed powder and PM Ti2AlNb alloy were tested. Results show that mean grain size of PM Ti2AlNb alloy is infl uenced by powder particle size, but particle size has no signifi cant infl uence on tensile properties. Finer Ti2AlNb powder has low Argon gas bubble ratio and high oxygen content, and poor fl owability of fi ner powder increases the degree of diffculty during degassing. As a result, big pores(> 50 μm) are observed in PM Ti2AlNb alloy prepared by fi ner powder and cause plasticity loss of tensile properties. In order to get a better comprehensive properties of PM Ti2AlNb alloy, powder with an average size(~ 100 μm) is suggested. 展开更多
关键词 TI2ALNB alloy POWDER METALLURGY POWDER SIZE distribution Hot isostatic PRESSING
原文传递
Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion 被引量:7
12
作者 Amal Shaji Karapuzha Darren Fraser +2 位作者 Yuman Zhu Xinhua Wu Aijun Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期99-117,共19页
Prior to the application of AM components for critical applications,it is necessary to have a better understanding of the effect of different post-fabrication treatments on the microstructure and mechanical properties... Prior to the application of AM components for critical applications,it is necessary to have a better understanding of the effect of different post-fabrication treatments on the microstructure and mechanical properties of such parts.In this study,efforts were made to achieve an in-depth understanding of the effect of post-fabrication Solution Heat Treatment(SHT)and Hot Isostatic Pressing(HIP)on the microstructure and mechanical properties of Hastelloy X parts built by electron beam powder bed fusion(PBF-EB)process.The effects of SHT and HIP on porosity,microstructure,texture and mechanical properties have been investigated and compared with that of as-built PBF-EB Hastelloy X.Post-fabrication HIP treatment led to a significant reduction in the porosity content,whereas no notable difference in porosity was observed between SHT and as-built parts.There was no evidence of any recrystallization occurring following the post-fabrication treatments as elongated columnar grain structures observed within as-built part were found to be maintained even after SHT and HIP process alongside the strong<100>crystallographic texture.Emphasis was laid upon understanding the influence of SHT and HIP on mechanical properties through stress-strain curves and work-hardening behaviour. 展开更多
关键词 Additive manufacturing Electron beam powder bed fusion Nickel-based superalloy Heat treatment Hot isostatic pressing
原文传递
Effects of hot isostatic pressing temperature on casting shrinkage densification and microstructure of Ti6Al4V alloy 被引量:7
13
作者 Qian Xu Jian-xin Zhou +4 位作者 Hai Nan Ya-jun Yin Min Wang Xu Shen Xiao-yuan Ji 《China Foundry》 SCIE 2017年第5期429-434,共6页
The Ti6Al4V alloy castings were produced by the investment casting process,and the hot isostatic pressing(HIP)was used to remove shrinkage from castings.The processing pressure and holding time for HIP were 150 MPa an... The Ti6Al4V alloy castings were produced by the investment casting process,and the hot isostatic pressing(HIP)was used to remove shrinkage from castings.The processing pressure and holding time for HIP were 150 MPa and 20 min,respectively.Four different HIP temperatures were tested,including 750℃,850℃,920℃and 950℃.To evaluate the effects of temperature on densification and microstructure of Ti6Al4V alloy treated by HIP,non-destructive testing and metallographic observation was performed.The experimental results show that the shrinkage was completely closed at 920℃and 950℃.The densification of Ti6Al4V alloy increased as the HIP temperature increased below 920℃.The lamel ae were more uniform,the thickness of lamel ae was obviously broadened and the structure was coarsen.Besides,the Norton creep equation was used to simulate the effect of different temperatures on the densification of Ti6Al4V alloy during HIP.The simulation results were in good agreement with the experimental results.It was also found that 920℃is a suitable temperature for HIP for Ti6Al4V alloy. 展开更多
关键词 Ti6Al4V alloy hot isostatic pressing TEMPERATURE casting shrinkage DENSIFICATION MICROSTRUCTURE
在线阅读 下载PDF
Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing 被引量:5
14
作者 Langping Zhu Yu Pan +6 位作者 Yanjun Liu Zhiyu Sun Xiangning Wang Hai Nan Muhammad-Arif Mughal Dong Lu Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期697-706,共10页
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev... Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy. 展开更多
关键词 POWDER titanium alloy hot isostatic pressing STRENGTH fracture toughness
在线阅读 下载PDF
Influence of hot isostatic pressing on microstructure,properties and deformability of selective laser melting TC4 alloy 被引量:6
15
作者 Tai-qi Yan Bing-qing Chen +1 位作者 Xia Ji Shao-qing Guo 《China Foundry》 SCIE CAS 2021年第4期389-396,共8页
The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was s... The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was studied.The results show that the microstructure of SLM TC4 alloy is composed of acicular martensiteα’phase,and the sample exhibits high microhardness and strength,but low plasticity.After hot isostatic pressing,acicular martensiteα’phase transforms intoα+βphase,and with the increase of hot isostatic pressing temperature and duration,αphase with coarse lath is gradually refined,and the proportion ofαphase is gradually reduced.Because of the change of phase constitution in SLM TC4 alloy after hot isostatic pressing,the grain refinement strengthening is weakened,the density of dislocation is reduced,so that both microhardness and tensile strength are decreased by around 20%,the elongation is increased by more than about 70%,even over 100%,compared with as-deposited TC4 alloy.When the hot isostatic pressing regime is 940°C/3 h/150 MPa,the tensile strength and the elongation achieve optimal match,which are about890 MPa and around 14.0%in both directions.The fracture mechanism of alloy after 940 oC/3 h/150 MPa HIP is dultile fracture.Hot isostatic pressing causes concave deformation of SLM TC4 alloy thin-walled frames,and the deformation degree increases with the increase of temperature. 展开更多
关键词 selective laser melting TC4 alloy hot isostatic pressing MICROSTRUCTURE mechanical properties DEFORMABILITY
在线阅读 下载PDF
Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components 被引量:5
16
作者 Min Cheng Zhengguan Lu +4 位作者 Jie Wu Ruipeng Guo Junwei Qiao Lei Xu Rui Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期177-185,共9页
The present work reports the effect of thermal induced porosity(TIP)on the high-cycle fatigue(HCF)and very high-cycle fatigue(VHCF)behaviors of hot-isostatic-pressed(HIPed)Ti-6Al-4V alloy from gasatomized powder.The r... The present work reports the effect of thermal induced porosity(TIP)on the high-cycle fatigue(HCF)and very high-cycle fatigue(VHCF)behaviors of hot-isostatic-pressed(HIPed)Ti-6Al-4V alloy from gasatomized powder.The results show that the residual pores in the as-HIPed powder compacts present no obvious effect on the HCF life.The regrowth of the residual pores can be observed after solution heat treatment.The pore location ranks the most harmful for the fatigue life compared with the other initiating defects.The maximum stress intensity factors were calculated.The plastic zone size of fine granular area(FGA)is much less than the characteristic size of the microstructure,and the crucial size of the internal pores in this study is about 40μm.The failure types of fatigue specimens in the VHCF regime were classified,and the competition of different failure types was described based on the modified Poisson distribution. 展开更多
关键词 Titanium alloy Hot isostatic pressing Fatigue life Crack initiation type POROSITY
原文传递
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy 被引量:4
17
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
在线阅读 下载PDF
Diffusion bonding of Ti−6Al−4V titanium alloy powder and solid by hot isostatic pressing 被引量:4
18
作者 Yi XIAO Li-hui LANG +1 位作者 Wen-cai XU De-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3587-3595,共9页
The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron micros... The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron microscope(SEM).The microhardness and tensile tests were conducted to investigate the mechanical properties.The results showed that the powder compact was near-fully dense,and the powder/solid interface was tight and complete.The microhardness of the interface was higher than that of the powder compact and solid.The fractures of all powder−solid tensile specimens were on the solid side rather than at the interface,which indicated that a good interfacial strength was obtained.The tensile strength and elongation of the powder compact were higher than those of the solid.It is concluded that the HIP process can successfully fabricate high-quality Ti−6Al−4V powder−solid parts,which provides a novel near net shape technology for titanium alloys. 展开更多
关键词 Ti−6Al−4V alloy powder/solid interface hot isostatic pressing diffusion bonding microstructure mechanical properties
在线阅读 下载PDF
Effect of Hot Isostatic Pressing on Fatigue Properties of Laser Melting Deposited AerMet100 Steel 被引量:4
19
作者 CHENG Hao LIU Dong +3 位作者 TANG Hai-bo ZHANG Shu-quan RAN Xian-zhe WANG Hua-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第11期79-84,共6页
The ultra-high strength steel AerMetl00 was fabricated .by laser melting deposition (LMD) process. The effect of hot isostatic pressing (HIP) on high-cycle fatigue properties of the LMD AerMet100 steel was investi... The ultra-high strength steel AerMetl00 was fabricated .by laser melting deposition (LMD) process. The effect of hot isostatic pressing (HIP) on high-cycle fatigue properties of the LMD AerMet100 steel was investigated, and the influence of defects on fatigue behavior was discussed. Results showed that the LMD AerMetl00 steel had fine directionally solidified cellular dendrite structure and coarse columnar prior austenite grains. Metallurgical de fects such as gas pore and lack-of-fusion porosity were produced during the laser deposition process. After HIP treat- ment, the number and size of metallurgical defects had remarkably decreased. Moreover, high-cycle fatigue proper ties of the alloys after HIP treatment were superior to the as-deposited alloys. 展开更多
关键词 laser melting deposition hot isostatic pressing AerMetl00 steel high cycle fatigue metallurgical defect
原文传递
Study on topographic compensation model of the Okinawa Trough I. Calculation of theoretical isostatic response function 被引量:2
20
作者 Liu Baohua Wu Jinlong +1 位作者 Xin Baisen and Peng Chao 1. First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, China 2. Ocean University of Qingdao, Qingdao 266003, China (Received October 12, 1997 accepted July 17, 1998) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1999年第2期267-272,共6页
Based on regional compensation and experimental isostasy, the calculating formula of theoretical isostatic response function is deduced when the loads on top correlate with loads from below. A variety of curves of the... Based on regional compensation and experimental isostasy, the calculating formula of theoretical isostatic response function is deduced when the loads on top correlate with loads from below. A variety of curves of theoretical isostatic response function were calculated with different effective elastic thickness of the plate and by using different proportions between loads on top and loads from below. And preliminary discussion is made on shapes of the curves. 展开更多
关键词 OKINAWA TROUGH isostatic COMPENSATION topographic LOAD loads from below isostatic response function
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部