Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1....Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.展开更多
Fully utilizing renewable biomass energy is important for saving energy,reducing carbon emissions,and mitigating climate change.As the main hydrolysate of cellulose,a primary component of lignocellulose,glucose could ...Fully utilizing renewable biomass energy is important for saving energy,reducing carbon emissions,and mitigating climate change.As the main hydrolysate of cellulose,a primary component of lignocellulose,glucose could be employed as a starting material to prepare some other functional derivatives for improving the value of biomass resources.The isomerization of glucose to produce fructose is an important intermediate process during numerous high-value-added chemical preparations.Therefore,the development of efficient and selective catalysts for glucose isomerization is of great significance.Currently,glucose isomerase catalysts are limited by the harsh conditions required for microbial activity,which restricts further improvements in fructose yield.Additionally,heterogeneous Bronsted-base and Lewis-acid catalysts commonly employed in chemical isomerization methods often lead to the formation of undesirable by-products,resulting in reduced selectivity toward fructose.This study has demonstrated that lithium-loaded heterogeneous catalysts possess excellent isomerization capabilities under mild conditions.A highly efficient Li-C_(3)N_(4) catalyst was developed,achieving a fructose selectivity of 99.9% and a yield of 42.6% at 60℃ within 1.0 h-comparable to the performance of the enzymatic method.Characterization using X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),proton nuclear magnetic resonance(^(1)H NMR),and inductively coupled plasma(ICP)analyses confirmed that lithium was stably incorporated into the g-C_(3)N_(4) framework through the formation of Li-N bonds.Further investigations using CO_(2) temperature-programmed desorption(CO_(2)-TPD),in situ Fourier-transform infrared spectroscopy(FT-IR)and 7Li magic angle spinning nuclear magnetic resonance(^(7)Li MAS NMR)indicated that the isomerization proceeded via a base-catalyzed mechanism.The Li species were found to interact with hydroxyl groups generated through hydrolysis and simultaneously coordinated with nitrogen atoms in the C_(3)N_(4) matrix,resulting in the formation of Li-N_(6)-H_(2)O active sites.These active sites facilitated the deprotonation of glucose to form an enolate intermediate,followed by a proton transfer step that generated fructose.This mechanism not only improved the efficiency of fructose production but also provided valuable insight into the catalytic role of lithium within the isomerization process.展开更多
In recent years,the ternary strategy of adding a vip molecule to the active layer has been proven to be effective for improving the performance of organic solar cells(OSCs).Isomerization engineering of the vip mol...In recent years,the ternary strategy of adding a vip molecule to the active layer has been proven to be effective for improving the performance of organic solar cells(OSCs).Isomerization engineering of the vip molecule is a simple method to increase the amount of promising material,but there are only limited reports,and the structure-property relationships are still unclear.In this work,we synthesized three isomers named BTA5-F-o,BTA5-F-m,and BTA5-F-p,with different fluorine substitution positions,to study the influence of isomerization on the photovoltaic performance.After introducing them as the third components to the classic host system PM6:Y6,all three ternary devices showed improved power conversion efficiency(PCEs)compared to the binary system(PCE of 17.46%).The ternary OSCs based on BTA5-F-o achieved a champion PCE of 19.11%,while BTA5-F-m and BTA5-F-p realized PCEs of 18.65%and 18.45%,respectively.Mechanism studies have shown that the dipole moment of the BTA5-F-o end group is closer to that of the Y6 end group,despite the three isomers with almost identical energy levels and optical properties.It is indicated that the electron attraction ability of BTA5-F-o best matches that of Y6,which leads to the higher charge mobility,less charge recombination,and stronger exciton dissociation and extraction ability in the ternary blend system.This study suggests that rationally adjusting the position of substituents in the terminal group can be an effective way to construct nonfullerene vip acceptors to achieve highly efficient ternary OSCs.展开更多
The process of deep hydrodesulfurization(HDS)in gasoline typically results in the saturation of olefins,leading to significant reductions in octane number.In this work,Y-supported Co(Ni)-Mo catalysts that with differe...The process of deep hydrodesulfurization(HDS)in gasoline typically results in the saturation of olefins,leading to significant reductions in octane number.In this work,Y-supported Co(Ni)-Mo catalysts that with different Ni-Co content were prepared by the incipient wetness impregnation method,the structure and properties were characterized and analyzed using HRTEM,XPS,H_(2)-TPR,and NH_(3)-TPD.The isomerization of 1-hexene and 1-octene as well as the HDS of thiophene were studied by using model FCC naphtha.The incorporation of Ni was found to enhance the number of MoS_(2) stacking layers,thereby improving the degree of sulfurization in Mo and subsequently increasing the desulfurization rate,with a maximum achieved desulfurization rate of 94.7%.When employing a Ni/Co ratio of 3:2,optimal synergy between Ni and Co is achieved,resulting in a greater presence of multi-layer stacked II-Co(Ni)MoS active phases.Additionally,appropriate Brønsted acidity levels are maintained to facilitate efficient olefin isomerization while preserving high HDS activity.As a result,the current isomerization yield stands at 58.2%(mass).These understandings shed light on the development of highly HDS and olefin isomerization catalysts.展开更多
A series of novel crown aldoxime ethers were synthesized,demonstrating notable thermal and hydrolysis stability.The showcased acid-catalyzed and photo-induced cis/trans isomerization,which enables orthogonal control o...A series of novel crown aldoxime ethers were synthesized,demonstrating notable thermal and hydrolysis stability.The showcased acid-catalyzed and photo-induced cis/trans isomerization,which enables orthogonal control over both vip complexation and the chiroptical effects of these crown aldoxime ethers,manifesting a regulation of complexation through isomerization at binding heteroatoms.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
An efficient and E-selective monoisomerization of 1-alkenes is developed with a bis(phosphine)-based PCP-type Co complex as the catalyst.The protocol provides an atom-economical approach to trans-2-alkenes with high r...An efficient and E-selective monoisomerization of 1-alkenes is developed with a bis(phosphine)-based PCP-type Co complex as the catalyst.The protocol provides an atom-economical approach to trans-2-alkenes with high regio-and stereoselectivity,featuring mild conditions and wide substrate scope.Mechanistic investigation supports a cobalt-hydride pathway involving reversible alkene insertion/β-H elimination,and the step ofβ-H elimination at the allylic position is likely the rate-determining step.展开更多
Acetylacetone(AcAc)is a typical class ofβ-diketones with broad industrial applications due to the property of the keto-enol isomers,but its isomerization and chemical reactions at the air-droplet interface are still ...Acetylacetone(AcAc)is a typical class ofβ-diketones with broad industrial applications due to the property of the keto-enol isomers,but its isomerization and chemical reactions at the air-droplet interface are still unclear.Hence,using combined molecular dynamics and quantum chemistry methods,the heterogeneous chemistry of AcAc at the air-droplet interface was investigated,including the attraction of AcAc isomers by the droplets,the distribution of isomers at the air-droplet interface,and the hydration reactions of isomers at the air-droplet interface.The results reveal that the preferential orientation of two AcAc isomers(keto-and enol-AcAc)to accumulate and accommodate at the acidic air-droplet interface.The isomerization of two AcAc isomers at the acidic air-droplet interface is more favorable than that at the neutral air-droplet interface because the“water bridge”structure is destroyed by H_(3)O^(+),especially for the isomerization from keto-Ac Ac to enol-AcAc.At the acidic air-droplet interface,the carbonyl or hydroxyl O-atoms of two AcAc isomers display an energetical preference to hydration.Keto-diol is the dominant products to accumulate at the air-droplet interface,and excessive keto-diol can enter the droplet interior to engage in the oligomerization.The photooxidation reaction of AcAc will increase the acidity of the air-droplet interface,which indirectly facilitate the uptake and formation of more keto-diol.Our results provide an insight into the heterogeneous chemistry ofβ-diketones and their influence on the environment.展开更多
Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challen...Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.展开更多
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption a...Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption and anti-counterfeiting.The utilization of these materials for patterning purposes requires different phase transition temperatures.However,once prepared,altering the phase transition temperature of them presents significant challenges.Herein,a poly(oxime-ester)(POE)network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization.The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli,with the transition temperature and kinetics dependent on UV light exposure time.Thus,complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time.Furthermore,we illustrate an example of temporal communication,where cooling time or temperature serves as the encoded information.This research expands the application scope of advanced encryption materials,showcasing the potential of POE in dynamic information encryption and decryption processes.展开更多
Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-hepta...Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.展开更多
Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus wa...Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.展开更多
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling...The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.展开更多
Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that th...Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.展开更多
A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystalli...A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystallization followed by protonation and Pt-loading. The product formed had a spherical morphology with bicontinuous lamellar with a diameter in the range of 500-700 nm. The catalytic activity of the Pt/HSi@Y has been assessed based on light linear alkane (C5-C7) isomerization in a micro-catalytic pulse reactor at 423-623 K. A pyridine IR study confirmed that the introduction of fibrous silica on Y zeolite increased the Lewis acid sites corresponding with the formation of extra-framework Al which led to the generation of more protonic acid sites. A hydrogen adsorbed IR study showed that the protonic acid sites which act as active sites in the isomerization were formed via dissociative-adsorption of molecular hydrogen releasing electrons to the nearby Lewis acid sites. Thus, it is suggested that the presence of Pt and HSi@Y with a high number of Lewis acid as well as weak Bronsted acid sites improved the activity and stability in C5, C6 and C7 isomerization via hydrogen spill-over mechanism.展开更多
Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible d...Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.展开更多
Well dispersion of tin species in an isolated form is a quite challenge since tin salts are easily hydrolyzed into(hydr)oxides during aqueous stannation of β-zeolite.In this study,immobilization of tin species on h...Well dispersion of tin species in an isolated form is a quite challenge since tin salts are easily hydrolyzed into(hydr)oxides during aqueous stannation of β-zeolite.In this study,immobilization of tin species on high silica commercial β-zeolite by using SnCl_2/Choline chloride(ChCl) complex followed with calcination provided a convenient way to get well dispersed Sn in β-zeolite in the aqueous condition,which was observed based on electron microscopy images,UV visible spectra and X-ray diffraction pattern.The existence of ChCl facilitated tin species to incorporate into zeolite.(1-2)wt%of Sn loaded β-zeolites exhibited good catalytic activity and high selectivity for glucose-fructose isomerization reaction.展开更多
Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have ...Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have great potential for practical application.展开更多
文摘Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.
基金supported by the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06)the Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology,Suzhou University of Science and Technology(SZLSDT202404).
文摘Fully utilizing renewable biomass energy is important for saving energy,reducing carbon emissions,and mitigating climate change.As the main hydrolysate of cellulose,a primary component of lignocellulose,glucose could be employed as a starting material to prepare some other functional derivatives for improving the value of biomass resources.The isomerization of glucose to produce fructose is an important intermediate process during numerous high-value-added chemical preparations.Therefore,the development of efficient and selective catalysts for glucose isomerization is of great significance.Currently,glucose isomerase catalysts are limited by the harsh conditions required for microbial activity,which restricts further improvements in fructose yield.Additionally,heterogeneous Bronsted-base and Lewis-acid catalysts commonly employed in chemical isomerization methods often lead to the formation of undesirable by-products,resulting in reduced selectivity toward fructose.This study has demonstrated that lithium-loaded heterogeneous catalysts possess excellent isomerization capabilities under mild conditions.A highly efficient Li-C_(3)N_(4) catalyst was developed,achieving a fructose selectivity of 99.9% and a yield of 42.6% at 60℃ within 1.0 h-comparable to the performance of the enzymatic method.Characterization using X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),proton nuclear magnetic resonance(^(1)H NMR),and inductively coupled plasma(ICP)analyses confirmed that lithium was stably incorporated into the g-C_(3)N_(4) framework through the formation of Li-N bonds.Further investigations using CO_(2) temperature-programmed desorption(CO_(2)-TPD),in situ Fourier-transform infrared spectroscopy(FT-IR)and 7Li magic angle spinning nuclear magnetic resonance(^(7)Li MAS NMR)indicated that the isomerization proceeded via a base-catalyzed mechanism.The Li species were found to interact with hydroxyl groups generated through hydrolysis and simultaneously coordinated with nitrogen atoms in the C_(3)N_(4) matrix,resulting in the formation of Li-N_(6)-H_(2)O active sites.These active sites facilitated the deprotonation of glucose to form an enolate intermediate,followed by a proton transfer step that generated fructose.This mechanism not only improved the efficiency of fructose production but also provided valuable insight into the catalytic role of lithium within the isomerization process.
基金support from the National Natural Science Foundation of China(62204146,52303259)the Start-up Grant of Henan University of Technology(2023BS035)。
文摘In recent years,the ternary strategy of adding a vip molecule to the active layer has been proven to be effective for improving the performance of organic solar cells(OSCs).Isomerization engineering of the vip molecule is a simple method to increase the amount of promising material,but there are only limited reports,and the structure-property relationships are still unclear.In this work,we synthesized three isomers named BTA5-F-o,BTA5-F-m,and BTA5-F-p,with different fluorine substitution positions,to study the influence of isomerization on the photovoltaic performance.After introducing them as the third components to the classic host system PM6:Y6,all three ternary devices showed improved power conversion efficiency(PCEs)compared to the binary system(PCE of 17.46%).The ternary OSCs based on BTA5-F-o achieved a champion PCE of 19.11%,while BTA5-F-m and BTA5-F-p realized PCEs of 18.65%and 18.45%,respectively.Mechanism studies have shown that the dipole moment of the BTA5-F-o end group is closer to that of the Y6 end group,despite the three isomers with almost identical energy levels and optical properties.It is indicated that the electron attraction ability of BTA5-F-o best matches that of Y6,which leads to the higher charge mobility,less charge recombination,and stronger exciton dissociation and extraction ability in the ternary blend system.This study suggests that rationally adjusting the position of substituents in the terminal group can be an effective way to construct nonfullerene vip acceptors to achieve highly efficient ternary OSCs.
基金supported by the National Natural Science Foundation of China(U22B20140,22021004,22325808,22393950)the National Key Research and Development Program of China(2020YFA0210900).
文摘The process of deep hydrodesulfurization(HDS)in gasoline typically results in the saturation of olefins,leading to significant reductions in octane number.In this work,Y-supported Co(Ni)-Mo catalysts that with different Ni-Co content were prepared by the incipient wetness impregnation method,the structure and properties were characterized and analyzed using HRTEM,XPS,H_(2)-TPR,and NH_(3)-TPD.The isomerization of 1-hexene and 1-octene as well as the HDS of thiophene were studied by using model FCC naphtha.The incorporation of Ni was found to enhance the number of MoS_(2) stacking layers,thereby improving the degree of sulfurization in Mo and subsequently increasing the desulfurization rate,with a maximum achieved desulfurization rate of 94.7%.When employing a Ni/Co ratio of 3:2,optimal synergy between Ni and Co is achieved,resulting in a greater presence of multi-layer stacked II-Co(Ni)MoS active phases.Additionally,appropriate Brønsted acidity levels are maintained to facilitate efficient olefin isomerization while preserving high HDS activity.As a result,the current isomerization yield stands at 58.2%(mass).These understandings shed light on the development of highly HDS and olefin isomerization catalysts.
基金support of the National Natural Science Foundation of China (Nos.22271201,92056116,22171194,22201194)the Science & Technology Department of Sichuan Province (Nos.2022YFH0095 and 2021ZYD0052)the Fundamental Research Funds for the Central Universities (No.20826041D4117)。
文摘A series of novel crown aldoxime ethers were synthesized,demonstrating notable thermal and hydrolysis stability.The showcased acid-catalyzed and photo-induced cis/trans isomerization,which enables orthogonal control over both vip complexation and the chiroptical effects of these crown aldoxime ethers,manifesting a regulation of complexation through isomerization at binding heteroatoms.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
文摘An efficient and E-selective monoisomerization of 1-alkenes is developed with a bis(phosphine)-based PCP-type Co complex as the catalyst.The protocol provides an atom-economical approach to trans-2-alkenes with high regio-and stereoselectivity,featuring mild conditions and wide substrate scope.Mechanistic investigation supports a cobalt-hydride pathway involving reversible alkene insertion/β-H elimination,and the step ofβ-H elimination at the allylic position is likely the rate-determining step.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2019B151502064)the National Natural Science Foundation of China(Nos.42077189,42020104001,and 42277081)+3 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)the Science and Technology Key Project of Guangdong ProvinceChina(No.2019B110206002)the Guangdong Provincial Key R&D Program(No.2022-GDUT-A0007)。
文摘Acetylacetone(AcAc)is a typical class ofβ-diketones with broad industrial applications due to the property of the keto-enol isomers,but its isomerization and chemical reactions at the air-droplet interface are still unclear.Hence,using combined molecular dynamics and quantum chemistry methods,the heterogeneous chemistry of AcAc at the air-droplet interface was investigated,including the attraction of AcAc isomers by the droplets,the distribution of isomers at the air-droplet interface,and the hydration reactions of isomers at the air-droplet interface.The results reveal that the preferential orientation of two AcAc isomers(keto-and enol-AcAc)to accumulate and accommodate at the acidic air-droplet interface.The isomerization of two AcAc isomers at the acidic air-droplet interface is more favorable than that at the neutral air-droplet interface because the“water bridge”structure is destroyed by H_(3)O^(+),especially for the isomerization from keto-Ac Ac to enol-AcAc.At the acidic air-droplet interface,the carbonyl or hydroxyl O-atoms of two AcAc isomers display an energetical preference to hydration.Keto-diol is the dominant products to accumulate at the air-droplet interface,and excessive keto-diol can enter the droplet interior to engage in the oligomerization.The photooxidation reaction of AcAc will increase the acidity of the air-droplet interface,which indirectly facilitate the uptake and formation of more keto-diol.Our results provide an insight into the heterogeneous chemistry ofβ-diketones and their influence on the environment.
基金the National Natural Science Foundation of China(2180212552074244)+2 种基金the Central Plains Science and Technology Innovation Leader Project(214200510006)Henan Outstanding Foreign Scientists,Workroom(GZS2018004)and the National Key R&D Program of China(2022YFC2104505)the Program of Henan Center for Oustanding Overseas Scientists(No.GZS2022007)for the financial support.
文摘Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金supported by the National Natural Science Foundation of China(No.22005061)the Natural Science Foundation of Jiangxi Province(No.20224BAB214009).
文摘Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption and anti-counterfeiting.The utilization of these materials for patterning purposes requires different phase transition temperatures.However,once prepared,altering the phase transition temperature of them presents significant challenges.Herein,a poly(oxime-ester)(POE)network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization.The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli,with the transition temperature and kinetics dependent on UV light exposure time.Thus,complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time.Furthermore,we illustrate an example of temporal communication,where cooling time or temperature serves as the encoded information.This research expands the application scope of advanced encryption materials,showcasing the potential of POE in dynamic information encryption and decryption processes.
基金National Natural Science Foundation of China(Grant No.22272129).
文摘Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.
文摘Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062)the National Basic Research Program of China (2007CB714000)
文摘The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.
基金financial supports by National Key R&D Program of China(Grant No.2017YFB0306702)are gratefully acknowledged。
文摘Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.
基金supported by the Universiti Teknologi Malaysia through Research University Grant No. 13H61 and 19H04
文摘A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystallization followed by protonation and Pt-loading. The product formed had a spherical morphology with bicontinuous lamellar with a diameter in the range of 500-700 nm. The catalytic activity of the Pt/HSi@Y has been assessed based on light linear alkane (C5-C7) isomerization in a micro-catalytic pulse reactor at 423-623 K. A pyridine IR study confirmed that the introduction of fibrous silica on Y zeolite increased the Lewis acid sites corresponding with the formation of extra-framework Al which led to the generation of more protonic acid sites. A hydrogen adsorbed IR study showed that the protonic acid sites which act as active sites in the isomerization were formed via dissociative-adsorption of molecular hydrogen releasing electrons to the nearby Lewis acid sites. Thus, it is suggested that the presence of Pt and HSi@Y with a high number of Lewis acid as well as weak Bronsted acid sites improved the activity and stability in C5, C6 and C7 isomerization via hydrogen spill-over mechanism.
文摘Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.
基金supported by Aomori City Governmentthe Doctoral Program of Ministry of Education,Culture,Sport,Science,and Technology(MEXT),Japan
文摘Well dispersion of tin species in an isolated form is a quite challenge since tin salts are easily hydrolyzed into(hydr)oxides during aqueous stannation of β-zeolite.In this study,immobilization of tin species on high silica commercial β-zeolite by using SnCl_2/Choline chloride(ChCl) complex followed with calcination provided a convenient way to get well dispersed Sn in β-zeolite in the aqueous condition,which was observed based on electron microscopy images,UV visible spectra and X-ray diffraction pattern.The existence of ChCl facilitated tin species to incorporate into zeolite.(1-2)wt%of Sn loaded β-zeolites exhibited good catalytic activity and high selectivity for glucose-fructose isomerization reaction.
文摘Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have great potential for practical application.