Ectothermic organisms may expand their thermal tolerance by producing multiple protein isoforms with differing thermal sensitivities.While such isoforms commonly originate from allelic variation at a single locus(allo...Ectothermic organisms may expand their thermal tolerance by producing multiple protein isoforms with differing thermal sensitivities.While such isoforms commonly originate from allelic variation at a single locus(allozymes)or from gene duplication that gives rise to paralogs with distinct thermal responses,this study investigated mRNA editing as an alternative,post-transcriptional mechanism for generating mRNA variants.Cytosolic malate dehydrogenase(cMDH)was examined in foot tissue of two congeners of the marine mussel genus Mytilus,which occupy different thermal environments.Multiple editing events were detected within the mRNA coding region in both species.Editing sites were species-specific,with no shared positions identified.In M.coruscus,editing occurred at 117,123,135,190,195,204,279,and 444,while in M.galloprovincialis,editing was detected at 216 and 597.Each species exhibited multiple edited mRNA variants,and these isoforms were associated with differential protein expression.These findings suggest that mRNA editing may contribute an additional layer of molecular variation.The generation of diverse mRNA isoforms from a single DNA coding sequence may enhance enzymatic flexibility across temperature ranges,supporting eurythermal physiological performance and mitigating thermal stress.Moreover,the presence of multiple edited transcripts within individual organisms raises important caveats about the limitations of approaches that deduce amino acid sequences or estimate adaptive variation solely from genomic data.展开更多
AIM: To develop a PCR assay using mutant-specific primers to detect mutation of tyrosine-methionine-aspartate-aspartate (YMDD) motif of HBV to tyrosine-valine-aspartate-aspartate (YVDD) or tyrosine-isoleucine-aspartat...AIM: To develop a PCR assay using mutant-specific primers to detect mutation of tyrosine-methionine-aspartate-aspartate (YMDD) motif of HBV to tyrosine-valine-aspartate-aspartate (YVDD) or tyrosine-isoleucine-aspartate-aspartate (YIDD).METHODS: Cloned wild-type and mutant HBV sequences were used as templates to test the sensitivity and specificity of the assay. A variety of primer construction, primer concentration, dNTP concentration, and annealing temperature of primers were systematically examined. Pair primers specifi c to rtL180M and rtM204V were selected for YVDD detection. Primer specif ic to rtM204I with an additional 3’-penultimate base mismatched to both the mutant and wild-type sequence was selected for YIDD detection. We applied this assay to study YMDD mutants in 28 chronic hepatitis B patients before and after lamivudine treatment.RESULTS: We could detect as little as 0.001%-0.00001% of mutant viruses coexisting in 108-109 copies of wild-type HBV using this assay. YMDD mutants were detected in 8 of 12 HBeAg-positive patients and 8 of 16 HBeAg-negative patients before lamivudine treatment. After treatment, two more patients in HBeAg-positive patients and seven more patients in HBeAg-negative patients developed YMDD mutations. CONCLUSION: We developed a highly sensitive and specifi c assay for detecting YMDD mutants. This assay can be applied to monitor chronic hepatitis B patients before and during lamivudine treatment.展开更多
Oyster,as a common aquatic food,play an important role in shellfish allergy.In this study,2 tropomyosin(TM)isoforms TM-αand TM-β(TM-α/-β)in Alectryonella plicatula were identified.The sequences of 852 bp encoding ...Oyster,as a common aquatic food,play an important role in shellfish allergy.In this study,2 tropomyosin(TM)isoforms TM-αand TM-β(TM-α/-β)in Alectryonella plicatula were identified.The sequences of 852 bp encoding 284 amino acids of TM-α/-βand 2 recombinant proteins were obtained,respectively.There were 12 amino acid differences between TM-α/-β.The results of immunological experiments indicated that TM-βhad stronger immunobinding activity and immunoreactivity than those of TM-α.Structural analysis showed that TM-βhad moreα-helix and higher surface hydrophobicity than TM-α.Sequences and epitopes alignment with shellfish TMs revealed that amino acids of TM-βwere more frequently recognized as IgE epitopes in other shellfish TMs than TM-α.Differences in structure and sequence account for the higher immunological activity of TM-βcompared to TM-α.These findings provide a theoretical basis for enriching the understanding of shellfish TM and accurate diagnosis of allergic components.展开更多
Trastuzumab resistance is one of the causes of poor prognosis in patients with human epidermal growth factor receptor 2(HER2)-positive(HER2+)breast cancer(BC).The truncated isoform of dopamine-and cAMPregulated phosph...Trastuzumab resistance is one of the causes of poor prognosis in patients with human epidermal growth factor receptor 2(HER2)-positive(HER2+)breast cancer(BC).The truncated isoform of dopamine-and cAMPregulated phosphoprotein(t-DARPP)has been reported to be involved in trastuzumab therapy resistance and promoting tumor progression.To evaluate the t-DARPP expression in BC,paired tumors and surrounding normal tissues were analyzed by real-time polymerase chain reaction and confirmed higher DARPP-32 kDa family mRNA expression in HER2+BC tumor tissues.We established 2 patient-derived xenografts(PDX)mice models to test the efficacy of trastuzumab,named model 1(non-responder)and model 2(responder).t-DARPP and p95-HER2 protein-protein interactions were detected in PDX tumor tissue from non-responders using Förster resonance energy transfer assays.Instead,there is no response from the responder.Furthermore,mechanistic studies using transwell and western blot assays demonstrated that t-DARPP could upregulate epithelial-mesenchymal transition signaling proteins,enhance p95-HER2 expression and promote cell migration.We found that quercetin effectively reduced t-DARPP expression in HER2+BC cells.In t-DARPP ShRNA-suppressed cells,quercetin synergistically enhanced trastuzumab-induced apoptotic cell death and G2/M phase arrest.In conclusion,the combination of quercetin and trastuzumab treatment by targeting t-DARPP in HER2+BC patients has the potential as a biomarker for mitigating drug resistance.展开更多
Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subseq...Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.展开更多
Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW...Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW264.7) were stimulated by LPS alone, or with long-term of PMA pretreatment. Then cytotoxicities to P815 cells (by MTT assay) and IL-1, TNF- (by ELISA) and nitric oxide (NO) production (by Griess reagent) in supernatants were measured. Western blot for PKC isoforms after long-term PMA pretreatment was analyzed. Results: RAW264.7 cells were stimulated with LPS to kill target tumor cells P815, whereas P388D1 cells failed to develop such an ability. Down-regulation of PKC isoforms by chronic treatment with PMA significantly inhibited the LPS-induced cytotoxicity in RAW264.7 cells. In unstimulated state, Western blotting with rabbit antiserum specific for the PKC, 1, 2, or showed all 5 isoforms were detected in P388D1 cells, while only PKC, PKC1 and PKC were detected in RAW264.7 cells. Exposure of the cells to long-term of PMA treatment significantly down-regulated the expression of PKC, PKC1 and PKC in RAW264.7 cells. But in P388D1 cells, although PKC, PKC and PKC were down-regulated, the expression of PKC1 and PKC2 could not be regulated. Comparing with LPS-induced IL-1, TNF- and NO production by the two macrophage cell lines, P388D1 failed to produce NO. In RAW264.7 cells, LPS-induced NO production and antitumor activity was attenuated by the addition of L-NAME, an iNOS inhibitor. Conclusion: The results indicated a critical role of PKC in LPS-induced antitumor activity and this cytotoxicity is mainly due to PKC- mediated NO production by RAW264.7 cells, but not a direct cytotoxic activity.展开更多
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr...Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.展开更多
[Objective] This study aimed to analyze the effects of temperature on the expression of AGPase isoform genes in rice endosperm during milk stage. [Method] Different temperature treatments (33 and 25 ℃ of daily mean ...[Objective] This study aimed to analyze the effects of temperature on the expression of AGPase isoform genes in rice endosperm during milk stage. [Method] Different temperature treatments (33 and 25 ℃ of daily mean temperature for high and normal temperature treatments, respectively) and the real-time fluorescence quantitative PCR ( FQPCR) were used to analyze the expression patterns of seven isoforms (AGPS1, AGPS2a, AGPS2b, AGPL1, AGPL2, AGPL3 and AGPL4) of ADPglucose pyrophosphorylase (AGPase) which was the key enzyme in starch synthesis and metabolism in rice endosperm of two rice varieties Teqing and Thai Fragrant Rice. [Result] The AGPase isoforms AGPS2b, AGPL2 and AGPL3 had much higher expression than the other four isoforms, thus they were thought to be the main expression patterns of AGPase in rice endosperm. The relative expressions of AGPL2 was the highest among all the isoforms. The relative expressions of AGPS2b, AGPL2 and AGPL3 were higher in the normal temperature treatment than in the high temperature treatment in both rice varieties. The relative expression of the three enzyme genes in milk stages in Teqing was higher than those in Thai Fragrant Rice under different temperature treatments. [Conclusion] This study provides a theoretical basis for further use of molecular biology techniques to cultivate stable high-quality rice varieties.展开更多
基金supported by the National Key Research and Development Program of China(2022-24)National Natural Science Foundation of China(42025604,42376102)Fundamental Research Funds for the Central Universities。
文摘Ectothermic organisms may expand their thermal tolerance by producing multiple protein isoforms with differing thermal sensitivities.While such isoforms commonly originate from allelic variation at a single locus(allozymes)or from gene duplication that gives rise to paralogs with distinct thermal responses,this study investigated mRNA editing as an alternative,post-transcriptional mechanism for generating mRNA variants.Cytosolic malate dehydrogenase(cMDH)was examined in foot tissue of two congeners of the marine mussel genus Mytilus,which occupy different thermal environments.Multiple editing events were detected within the mRNA coding region in both species.Editing sites were species-specific,with no shared positions identified.In M.coruscus,editing occurred at 117,123,135,190,195,204,279,and 444,while in M.galloprovincialis,editing was detected at 216 and 597.Each species exhibited multiple edited mRNA variants,and these isoforms were associated with differential protein expression.These findings suggest that mRNA editing may contribute an additional layer of molecular variation.The generation of diverse mRNA isoforms from a single DNA coding sequence may enhance enzymatic flexibility across temperature ranges,supporting eurythermal physiological performance and mitigating thermal stress.Moreover,the presence of multiple edited transcripts within individual organisms raises important caveats about the limitations of approaches that deduce amino acid sequences or estimate adaptive variation solely from genomic data.
文摘AIM: To develop a PCR assay using mutant-specific primers to detect mutation of tyrosine-methionine-aspartate-aspartate (YMDD) motif of HBV to tyrosine-valine-aspartate-aspartate (YVDD) or tyrosine-isoleucine-aspartate-aspartate (YIDD).METHODS: Cloned wild-type and mutant HBV sequences were used as templates to test the sensitivity and specificity of the assay. A variety of primer construction, primer concentration, dNTP concentration, and annealing temperature of primers were systematically examined. Pair primers specifi c to rtL180M and rtM204V were selected for YVDD detection. Primer specif ic to rtM204I with an additional 3’-penultimate base mismatched to both the mutant and wild-type sequence was selected for YIDD detection. We applied this assay to study YMDD mutants in 28 chronic hepatitis B patients before and after lamivudine treatment.RESULTS: We could detect as little as 0.001%-0.00001% of mutant viruses coexisting in 108-109 copies of wild-type HBV using this assay. YMDD mutants were detected in 8 of 12 HBeAg-positive patients and 8 of 16 HBeAg-negative patients before lamivudine treatment. After treatment, two more patients in HBeAg-positive patients and seven more patients in HBeAg-negative patients developed YMDD mutations. CONCLUSION: We developed a highly sensitive and specifi c assay for detecting YMDD mutants. This assay can be applied to monitor chronic hepatitis B patients before and during lamivudine treatment.
基金supported by the National Natural Scientific Foundation of China(32072336,32472449).
文摘Oyster,as a common aquatic food,play an important role in shellfish allergy.In this study,2 tropomyosin(TM)isoforms TM-αand TM-β(TM-α/-β)in Alectryonella plicatula were identified.The sequences of 852 bp encoding 284 amino acids of TM-α/-βand 2 recombinant proteins were obtained,respectively.There were 12 amino acid differences between TM-α/-β.The results of immunological experiments indicated that TM-βhad stronger immunobinding activity and immunoreactivity than those of TM-α.Structural analysis showed that TM-βhad moreα-helix and higher surface hydrophobicity than TM-α.Sequences and epitopes alignment with shellfish TMs revealed that amino acids of TM-βwere more frequently recognized as IgE epitopes in other shellfish TMs than TM-α.Differences in structure and sequence account for the higher immunological activity of TM-βcompared to TM-α.These findings provide a theoretical basis for enriching the understanding of shellfish TM and accurate diagnosis of allergic components.
基金The National Science and Technology Council of Taiwan funded this study.
文摘Trastuzumab resistance is one of the causes of poor prognosis in patients with human epidermal growth factor receptor 2(HER2)-positive(HER2+)breast cancer(BC).The truncated isoform of dopamine-and cAMPregulated phosphoprotein(t-DARPP)has been reported to be involved in trastuzumab therapy resistance and promoting tumor progression.To evaluate the t-DARPP expression in BC,paired tumors and surrounding normal tissues were analyzed by real-time polymerase chain reaction and confirmed higher DARPP-32 kDa family mRNA expression in HER2+BC tumor tissues.We established 2 patient-derived xenografts(PDX)mice models to test the efficacy of trastuzumab,named model 1(non-responder)and model 2(responder).t-DARPP and p95-HER2 protein-protein interactions were detected in PDX tumor tissue from non-responders using Förster resonance energy transfer assays.Instead,there is no response from the responder.Furthermore,mechanistic studies using transwell and western blot assays demonstrated that t-DARPP could upregulate epithelial-mesenchymal transition signaling proteins,enhance p95-HER2 expression and promote cell migration.We found that quercetin effectively reduced t-DARPP expression in HER2+BC cells.In t-DARPP ShRNA-suppressed cells,quercetin synergistically enhanced trastuzumab-induced apoptotic cell death and G2/M phase arrest.In conclusion,the combination of quercetin and trastuzumab treatment by targeting t-DARPP in HER2+BC patients has the potential as a biomarker for mitigating drug resistance.
文摘Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.
文摘Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW264.7) were stimulated by LPS alone, or with long-term of PMA pretreatment. Then cytotoxicities to P815 cells (by MTT assay) and IL-1, TNF- (by ELISA) and nitric oxide (NO) production (by Griess reagent) in supernatants were measured. Western blot for PKC isoforms after long-term PMA pretreatment was analyzed. Results: RAW264.7 cells were stimulated with LPS to kill target tumor cells P815, whereas P388D1 cells failed to develop such an ability. Down-regulation of PKC isoforms by chronic treatment with PMA significantly inhibited the LPS-induced cytotoxicity in RAW264.7 cells. In unstimulated state, Western blotting with rabbit antiserum specific for the PKC, 1, 2, or showed all 5 isoforms were detected in P388D1 cells, while only PKC, PKC1 and PKC were detected in RAW264.7 cells. Exposure of the cells to long-term of PMA treatment significantly down-regulated the expression of PKC, PKC1 and PKC in RAW264.7 cells. But in P388D1 cells, although PKC, PKC and PKC were down-regulated, the expression of PKC1 and PKC2 could not be regulated. Comparing with LPS-induced IL-1, TNF- and NO production by the two macrophage cell lines, P388D1 failed to produce NO. In RAW264.7 cells, LPS-induced NO production and antitumor activity was attenuated by the addition of L-NAME, an iNOS inhibitor. Conclusion: The results indicated a critical role of PKC in LPS-induced antitumor activity and this cytotoxicity is mainly due to PKC- mediated NO production by RAW264.7 cells, but not a direct cytotoxic activity.
基金supported by the Natural Science Fund of Fujian Province,No.2020J011058(to JK)the Project of Fujian Provincial Hospital for High-level Hospital Construction,No.2020HSJJ12(to JK)+1 种基金the Fujian Provincial Finance Department Special Fund,No.(2021)848(to FC)the Fujian Provincial Major Scientific and Technological Special Projects on Health,No.2022ZD01008(to FC).
文摘Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
基金Supported by Special Project for Breeding and Cultivation of GMO Varieties of Ministry of Agriculture (2011ZX08001-001, 2011ZX08001-004)Major Science and Technology Program of Hunan, China (2011FJ1002-2)+1 种基金Natural Science Foundation of Hunan, China (09JJ3046 )Science and Technology Innovation Program of Hunan Academy of Agricultural Sciences (2009hnnkycx17)~~
文摘[Objective] This study aimed to analyze the effects of temperature on the expression of AGPase isoform genes in rice endosperm during milk stage. [Method] Different temperature treatments (33 and 25 ℃ of daily mean temperature for high and normal temperature treatments, respectively) and the real-time fluorescence quantitative PCR ( FQPCR) were used to analyze the expression patterns of seven isoforms (AGPS1, AGPS2a, AGPS2b, AGPL1, AGPL2, AGPL3 and AGPL4) of ADPglucose pyrophosphorylase (AGPase) which was the key enzyme in starch synthesis and metabolism in rice endosperm of two rice varieties Teqing and Thai Fragrant Rice. [Result] The AGPase isoforms AGPS2b, AGPL2 and AGPL3 had much higher expression than the other four isoforms, thus they were thought to be the main expression patterns of AGPase in rice endosperm. The relative expressions of AGPL2 was the highest among all the isoforms. The relative expressions of AGPS2b, AGPL2 and AGPL3 were higher in the normal temperature treatment than in the high temperature treatment in both rice varieties. The relative expression of the three enzyme genes in milk stages in Teqing was higher than those in Thai Fragrant Rice under different temperature treatments. [Conclusion] This study provides a theoretical basis for further use of molecular biology techniques to cultivate stable high-quality rice varieties.