Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS...Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.展开更多
基金supported by the National Natural Science Foundation (NSF)of China:JSK (32071137 and 92054103)Funding for Scientific Research and Innovation Team of The First Affliated Hospital of Zhengzhou University:JSK (ZYCXTD2023014)。
文摘Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.