This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic p...This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.展开更多
By using NCAR/NCEP daily reanalysis data and the precipitation data in Liaoning routine automatic station during July 14-16,2008,the regional rainstorm weather process in Liaoning was done the isentropic analysis. Acc...By using NCAR/NCEP daily reanalysis data and the precipitation data in Liaoning routine automatic station during July 14-16,2008,the regional rainstorm weather process in Liaoning was done the isentropic analysis. According to the variation characteristics of isobar,isocratic specific humidity line and wind field on the isentropic surface,the rainstorm landing zone was gained and compared with the analysis results of isobaric surface. The results showed that the warm wet transportation belt on 330 K isentropic surface provided the rich water vapor condition for the rainstorm generation,and the distribution of air-pressure and wind field on the isentropic surface favored to understand the movement of airflow. Compared with the analysis of isobaric surface,the analysis of isobaric surface could better directly judge the landing zone of precipitation,and the forecast effect was better than the analysis forecast results of isobaric surface.展开更多
The pattern of isentropes in the vicinity of a first-order phase transition is proposed as a key for a sub-classification. While the confinement-deconfinement transition, conjectured to set in beyond a critical end po...The pattern of isentropes in the vicinity of a first-order phase transition is proposed as a key for a sub-classification. While the confinement-deconfinement transition, conjectured to set in beyond a critical end point in the QCD phase diagram, is often related to an entropic transition and the apparently settled gas-liquid transition in nuclear matter is an enthalphic transition, the conceivable local isentropes w.r.t. “incoming” or “outgoing” serve as another useful guide for discussing possible implications, both in the presumed hydrodynamical expansion stage of heavy-ion collisions and the core-collapse of supernova explosions. Examples, such as the quark-meson model and two-phase models, are shown to distinguish concisely the different transitions.展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are o...This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are obtained and the generalized Huygan's principle is exhibited. The approch of the paper is based on the detailed analysis of the Green function of Iinearized system. This is used to study the coupling of nonlinear diffesion waves.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isent...Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.展开更多
We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, ...We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, subjected to periodic boundary conditions. Both classical solutions and weak entropy solutions, as well as high-frequency limiting behavior are considered. The proofs depend on the theory of Cauchy problems of genuinely nonlinear hyperbolic systems of conservation laws.展开更多
In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for ...In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for the maximum principle to obtain the L^∞ estimates w(ρ^δ,ε, u^δ,ε)≤ B(t) and z(ρ^δ,ε, u^δ,ε)≤ B(t) for the viscosity solutions (ρ^δ,ε, u^δ,ε), where B(t) is a nonnegative bounded function for any finite time t. This work, in the special case γ≥ 3, extends the previous works, which provided the global entropy solutions for the same Cauchy problem with the restriction w(ρ^δ,ε, u^δ,ε)≤ 0 or z(ρ^δ,ε, u^δ,ε)≤ 0.展开更多
Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressib...Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.展开更多
Ultrasonic speeds of 4-aminobutyric acid in 0.0041,0.0125 and 0.0207 mol·kg^-1 aqueous salbutamol sulphate(SBS) solutions are measured at 308.15,313.15 and 318.15 K.Isentropic compressibility kS,change in isent...Ultrasonic speeds of 4-aminobutyric acid in 0.0041,0.0125 and 0.0207 mol·kg^-1 aqueous salbutamol sulphate(SBS) solutions are measured at 308.15,313.15 and 318.15 K.Isentropic compressibility kS,change in isentropic compressibility△k S,relative change in isentropic compressibility( △kS /kS^0) ,apparent molal compressibility kφ,limiting apparent molal compressibility kφ^0 ,transfer limiting apparent molal compressibility k φ^0,hydration number nH,pair and triplet interaction parameters kAS,kASS are estimated.The above parameters are used to interpret the solute-solute and solute-solvent interactions of 4-aminobutyric acid in the aqueous salbutamol sulphate solutions.展开更多
The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plant...The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plants,and piping Setting and stopping pressures of a safety valve, p set and p sto ,are traditionally adjusted with a fine tuning of seat ring and valve ring heights, h sr and h vr However, it is not easy to achieve the proper setting and stopping pressures of a safety valve in practice The depth of inside and outside grooves in a valve, d i and d o are modified and their effects on setting and stopping pressures of a safety vlave are tested The most appropriate values appear 1 0 mm in d i and 0 5~1 0 mm in d o,respectively The valve ring height, h vr ,shows that the best results can be achieved at 2 3 mm for setting pressures of 0 1~0 4 MPa and 1 0 mm for setting pressures of 0 5~1 0 MPa The stopping pressures increases with the increase of seat ring height, h sr , upto certain h sr value and then becomes independent to the seat ring height This implies that there exists the optimum h sr ,which provides the largest flow rate and the proper stopping pressure Stopping pressures of a safety valve are adjusted with the seat ring and valve ring heights This study,however,demonstrated that the modification of value grooves also changes setting and stopping pressures of a safety valve Therefore,the proper selection in dimensions of the inside and outside grooves should be considered for the safety valve design展开更多
A compactness frame of the Lax-Friedrichs scheme for the equations of gas dynamics is obtained by using some embedding theorems and an analysis of the difference scheme and the weak entropy.
In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10...In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10- species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly dif- ferent from those of ideal gases, A two-stage fuel heating and delivery system is used to heat the kerosene up to a tem- perature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.展开更多
In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity met...In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity method. In particular, the entropy solutions are uniformly bounded independent of time.展开更多
The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In ...The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer. These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of diabatic heating.展开更多
文摘This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.
文摘By using NCAR/NCEP daily reanalysis data and the precipitation data in Liaoning routine automatic station during July 14-16,2008,the regional rainstorm weather process in Liaoning was done the isentropic analysis. According to the variation characteristics of isobar,isocratic specific humidity line and wind field on the isentropic surface,the rainstorm landing zone was gained and compared with the analysis results of isobaric surface. The results showed that the warm wet transportation belt on 330 K isentropic surface provided the rich water vapor condition for the rainstorm generation,and the distribution of air-pressure and wind field on the isentropic surface favored to understand the movement of airflow. Compared with the analysis of isobaric surface,the analysis of isobaric surface could better directly judge the landing zone of precipitation,and the forecast effect was better than the analysis forecast results of isobaric surface.
文摘The pattern of isentropes in the vicinity of a first-order phase transition is proposed as a key for a sub-classification. While the confinement-deconfinement transition, conjectured to set in beyond a critical end point in the QCD phase diagram, is often related to an entropic transition and the apparently settled gas-liquid transition in nuclear matter is an enthalphic transition, the conceivable local isentropes w.r.t. “incoming” or “outgoing” serve as another useful guide for discussing possible implications, both in the presumed hydrodynamical expansion stage of heavy-ion collisions and the core-collapse of supernova explosions. Examples, such as the quark-meson model and two-phase models, are shown to distinguish concisely the different transitions.
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.
基金Supported in part by National Natural Science Foundationof China (19871065) Hua-Cheng Grant
文摘This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are obtained and the generalized Huygan's principle is exhibited. The approch of the paper is based on the detailed analysis of the Green function of Iinearized system. This is used to study the coupling of nonlinear diffesion waves.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金supported by grants from the National Key R&D Program of China(Grant No.2019YFC1510201)National Natural Science Foundation of China(Grant Nos.42075052 and 42088101)the Natural Science Foundation of Jiangsu Province(Grants No.BK20211288).
文摘Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.
基金supported by the National Natural Science Foundation of China(11371141 and 11871218)Science and Technology Commission of Shanghai Municipality(STCSM)under Grant No.18dz2271000
文摘We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, subjected to periodic boundary conditions. Both classical solutions and weak entropy solutions, as well as high-frequency limiting behavior are considered. The proofs depend on the theory of Cauchy problems of genuinely nonlinear hyperbolic systems of conservation laws.
基金supported by the Zhejiang Natural Science Foundation of China(LQ13A010022)supported by the Qianjiang professorship of Zhejiang Province of Chinathe National Natural Science Foundation of China(11271105)
文摘In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for the maximum principle to obtain the L^∞ estimates w(ρ^δ,ε, u^δ,ε)≤ B(t) and z(ρ^δ,ε, u^δ,ε)≤ B(t) for the viscosity solutions (ρ^δ,ε, u^δ,ε), where B(t) is a nonnegative bounded function for any finite time t. This work, in the special case γ≥ 3, extends the previous works, which provided the global entropy solutions for the same Cauchy problem with the restriction w(ρ^δ,ε, u^δ,ε)≤ 0 or z(ρ^δ,ε, u^δ,ε)≤ 0.
文摘Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.
文摘Ultrasonic speeds of 4-aminobutyric acid in 0.0041,0.0125 and 0.0207 mol·kg^-1 aqueous salbutamol sulphate(SBS) solutions are measured at 308.15,313.15 and 318.15 K.Isentropic compressibility kS,change in isentropic compressibility△k S,relative change in isentropic compressibility( △kS /kS^0) ,apparent molal compressibility kφ,limiting apparent molal compressibility kφ^0 ,transfer limiting apparent molal compressibility k φ^0,hydration number nH,pair and triplet interaction parameters kAS,kASS are estimated.The above parameters are used to interpret the solute-solute and solute-solvent interactions of 4-aminobutyric acid in the aqueous salbutamol sulphate solutions.
文摘The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plants,and piping Setting and stopping pressures of a safety valve, p set and p sto ,are traditionally adjusted with a fine tuning of seat ring and valve ring heights, h sr and h vr However, it is not easy to achieve the proper setting and stopping pressures of a safety valve in practice The depth of inside and outside grooves in a valve, d i and d o are modified and their effects on setting and stopping pressures of a safety vlave are tested The most appropriate values appear 1 0 mm in d i and 0 5~1 0 mm in d o,respectively The valve ring height, h vr ,shows that the best results can be achieved at 2 3 mm for setting pressures of 0 1~0 4 MPa and 1 0 mm for setting pressures of 0 5~1 0 MPa The stopping pressures increases with the increase of seat ring height, h sr , upto certain h sr value and then becomes independent to the seat ring height This implies that there exists the optimum h sr ,which provides the largest flow rate and the proper stopping pressure Stopping pressures of a safety valve are adjusted with the seat ring and valve ring heights This study,however,demonstrated that the modification of value grooves also changes setting and stopping pressures of a safety valve Therefore,the proper selection in dimensions of the inside and outside grooves should be considered for the safety valve design
文摘A compactness frame of the Lax-Friedrichs scheme for the equations of gas dynamics is obtained by using some embedding theorems and an analysis of the difference scheme and the weak entropy.
基金supported by the National Natural Science Foundation of China (10672169 and 10902115)
文摘In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10- species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly dif- ferent from those of ideal gases, A two-stage fuel heating and delivery system is used to heat the kerosene up to a tem- perature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.
基金supported in part by NSFC Grant No.11371349supported in part by NSFC Grant No.11541005Shandong Provincial Natural Science Foundation(ZR2015AM001)
文摘In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity method. In particular, the entropy solutions are uniformly bounded independent of time.
基金supported bythe National Science Foundation (USAGrant No. ATM-0758609)+1 种基金the National Aeronautics and Space Administration (USAGrant No. NNG05GR32G)
文摘The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer. These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of diabatic heating.