Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and...Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.展开更多
Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrati...Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.展开更多
The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static...The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static irregularity in the slab track.Based on the hydraulics theory,a thermal-hydro-mechanical(THM)coupled model of frozen soil is established and verified.We explore the process and characteristics of the temperature field and deformation of soil during the freezing process of high-speed railway subgrades and analyze the track irregularity variation law of China Railway Track SystemⅢslab tracks under uneven frost heaving deformation.The results show that,because the left and right slopes of high-speed railway subgrade are exposed to different amounts of solar radiation,which is the key factor causing uneven frost heaving of subgrade.Different strike angles cause changes in temperature of the subgrade’s upper part and the frost heaving amount on the surface,leading to differences in the deformation of the slab track structure:Increased strike angle weakens the rail level irregularity of the down line and marginally increases the rail level irregularity of the up line,and these become consistent in north-south directions.Therefore,when selecting railway lines in seasonal frozen areas,the west-east direction should be avoided to prevent the extremes in sunny-shady slopes effect on subgrades.展开更多
A coupling dynamic model of a subway train and an embedded track is established to study the safety limits of track irregularities.The simulated vehicle system was a 74-degrees of freedom multi-rigid body model,and th...A coupling dynamic model of a subway train and an embedded track is established to study the safety limits of track irregularities.The simulated vehicle system was a 74-degrees of freedom multi-rigid body model,and the rail was a Timoshenko beam.The slab was a three-dimensional solid finite element model.The sensitive wavelength irregularity was first studied,and then the safety limit of the sensitive wavelength was analyzed.The wheel-rail lateral force exhibited a substantial effect on the track alignment and gauge irregularity safety limit.The wheel-rail vertical force and the rate of wheel load reduction significantly affected the height and cross-level irregularity safety limit.The results demonstrate that the safety limits of the alignment,gauge,height,and cross-level embedded track geometric irregularity are 5.3 mm,[−10.5,8]mm,5.6 mm,and 6 mm,respectively.展开更多
In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was establ...In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.展开更多
Because the existing spectral estimation methods for railway track irregularity analysis are very sensitive to outliers, a robust spectral estimation method is presented to process track irregularity signals. The prop...Because the existing spectral estimation methods for railway track irregularity analysis are very sensitive to outliers, a robust spectral estimation method is presented to process track irregularity signals. The proposed robust method is verified using 100 groups of clean/contaminated data reflecting he vertical profile irregularity taken from Bejing-Guangzhou railway with a sampling frequency of 33 data every ~10 m, and compared with the Auto Regressive (AR) model. The experimental results show that the proposed robust estimation is resistible to noise and insensitive to outliers, and is superior to the AR model in terms of efficiency, stability and reliability.展开更多
The present article deals with the stresses developed in an initially stressed irregular viscoelastic half-space clue to a load moving with a constant velocity at a rough free surface. Expressions for normal and shear...The present article deals with the stresses developed in an initially stressed irregular viscoelastic half-space clue to a load moving with a constant velocity at a rough free surface. Expressions for normal and shear stresses are obtained in closed form. The substantial effects of influence parameters, viz., depth (from the free surface), irregularity factor, maximum depth of irregularity, viscoelastic parameter, horizontal and vertical initial stresses, and frictional coefficient, on normal and shear stresses are investigated. Moreover, comparative study is carried out for three different cases of irregularity, viz., rectangular irregularity, parabolic irregulariW and no irregularity, which is manifested through graphs.展开更多
The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wh...The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wheel-rail geometry relationship with the trace line method. The profile of the key rail sections was matched by cubic spline curve, and the shape interpolation was realized in non-controlling sections. The results show that the roll angles at each typical section increases gradually with the enlargement of track alignment irregularity. When the flange contact occurs, the roll angle increases dramatically. Proper track alignment irregularity towards the switch rail improves the structure irregularity of the turnout.展开更多
The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in...The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the 'Zusanli' point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate- independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture.展开更多
The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irre...The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity is taken in the half space in the form of a rectangle. It is observed that torsional surface waves propagate in this assumed medium. In the absence of the irregularity, the velocity equation of the torsional surface wave is also obtained. For a layer over a homogeneous half space, the velocity of torsional surface waves coincides with that of the Love waves.展开更多
For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the rela...For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the relationship between signal spectral irregularity and target physical properties is theoretically formed.A novel method of broadband underwater target echo detection under reverberation based on the signal spectral irregularity characteristics is proposed.The proposed method has the capability of discriminating between the direct target echo signal from reverberation.Simulation results of complex underwater target broadband acoustic scattering show that the echo can be detected even with the signal to reverberation ratio(SRR)below-10 dB by the proposed method based on the spectral irregularity(SI)feature.The corresponding sea experimental results also show that echo can be detected when the SRR is below 0 dB.The effectiveness and correctness of the proposed method are verified both in simulated data and in real data in sea experiment.展开更多
The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver...The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver irregularity than conventional methods.Firstly,the chaos character,i.e.fractal dimension,positive Lyapunov exponent,and state space parameters,including time delay and reconstruction dimension,are calculated respectively.As a result,a positive Lyapunov exponent and a fractal dimension are obtained,which demonstrates that the system is chaotic in fact.Secondly,both local linear forecast and global forecast models based on the reconstructed state are adopted to predict a segment part of the sliver irregularity series,which proves the validity of this analysis.Therefore,the sliver irregularity series shows the evidence of chaotic phenomena,and thus laying the theoretical foundation for analyzing and modeling the sliver irregularity series by applying the chaos theory,and providing a new way to understand the complexity of the sliver irregularity much better.展开更多
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu...Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.展开更多
The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-i...The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- city of torsional surface waves coincides with that of Love waves.展开更多
Longitudinal vibration of wheelset with respect to bogie frame often exists with a high acceleration magnitude and relative high frequency. First, a simplified model with a single wheelset moving at a constant speed o...Longitudinal vibration of wheelset with respect to bogie frame often exists with a high acceleration magnitude and relative high frequency. First, a simplified model with a single wheelset moving at a constant speed on a tangential track with irregularity is used to investigate the longitudinal vibration dynamics. Computional results indicate that the longitudinal vibration frequency of the wheelset is most sensitive to the primary longitudinal stiffness and the mass of the wheelset. As to the locomotive model, the longitudinal vibration is concerned with cross-level irregularity and vertical profile irregularity. Meanwhile, a method to estimate the resonance speed is presented. Finally, a possible solution is brought forward to extend wheel-rail service life by eliminating longitudinal vibration of the wheelset. The solution is simply to arrang the primary vertical damper with a forward angle, so that its damping component can be applied to longimdinal direction.展开更多
Using the empirical ionospheric model, the flux-tube integrated electron density and the ratio between the F-region Pedersen conductivity and the total E- and F-region Pedersen conductivity are calculated to investiga...Using the empirical ionospheric model, the flux-tube integrated electron density and the ratio between the F-region Pedersen conductivity and the total E- and F-region Pedersen conductivity are calculated to investigate the characteristics of the ionospheric asymmetry after sunset during a solar cycle. Furthermore, two indices representing the asymmetric strength of the parameters respectively are defined to study its relationship with the occurrences of the irregularities during different seasons and with different solar activities. The results indicate that the electron density and the Pedersen conductivity ratio show north-south remarkable hemispheric asymmetry at different solar energy levels. The asymmetric strengths represent the dependence on seasons and solar activities, and their variation depending on seasons and solar activities show a negative correlation with the occurrences of the equatorial irregularities and also have a negative relation with the linear growth rate of the generalized Rayleigh-Taylor instability.展开更多
This paper deals with the irregular profile of braced steel frame building in vertical direction with shear link bracing systems.The underlying fact of the paper is the effect of seismic force in braced frames with di...This paper deals with the irregular profile of braced steel frame building in vertical direction with shear link bracing systems.The underlying fact of the paper is the effect of seismic force in braced frames with different types of irregularities including mass irregularity,mass discontinuity and overhanging mass.For each successive model,the position of shear link bracings has been fixed to make the study effective.This study has investigated the vulnerable effect of irregular profiles in steel frame buildings.To attain the behavior of each frame,linear time history analysis method has been adopted for the present study.FEMA356 standard has been used here for linear time history analysis.Investigations on different frames exhibit that regular profile with symmetry in mass is more efficient while using overhanging mass is detrimental considering the time dependent displacements and accelerations.展开更多
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ...Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time.展开更多
Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,...Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52002344,U2034210,and 61960206010)the Development Project of State Key Laboratory of Rail Transit Vehicle System(Grant No.2022TPL_T09)。
文摘Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2024QYBS031)Fundamental Research Funds for the Central Universities(Grant No.2022JBQY007)。
文摘Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.
基金Projects(2021YFF0502100,2021YFB2600900)supported by the National Key R&D Program of ChinaProjects(52022085,52278461)supported by the National Natural Science Foundation of ChinaProject(22CXTD0051)supported by Sichuan Youth Science and Technology Innovation Team,China。
文摘The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static irregularity in the slab track.Based on the hydraulics theory,a thermal-hydro-mechanical(THM)coupled model of frozen soil is established and verified.We explore the process and characteristics of the temperature field and deformation of soil during the freezing process of high-speed railway subgrades and analyze the track irregularity variation law of China Railway Track SystemⅢslab tracks under uneven frost heaving deformation.The results show that,because the left and right slopes of high-speed railway subgrade are exposed to different amounts of solar radiation,which is the key factor causing uneven frost heaving of subgrade.Different strike angles cause changes in temperature of the subgrade’s upper part and the frost heaving amount on the surface,leading to differences in the deformation of the slab track structure:Increased strike angle weakens the rail level irregularity of the down line and marginally increases the rail level irregularity of the up line,and these become consistent in north-south directions.Therefore,when selecting railway lines in seasonal frozen areas,the west-east direction should be avoided to prevent the extremes in sunny-shady slopes effect on subgrades.
基金Supported by National Natural Science Foundation of China(Grant No.51708459)Science and Technology Research and Development Program of China Railway(Grant No.N2019G037)Sichuan Science and Technology Program(Grant No.2020YJ0076).
文摘A coupling dynamic model of a subway train and an embedded track is established to study the safety limits of track irregularities.The simulated vehicle system was a 74-degrees of freedom multi-rigid body model,and the rail was a Timoshenko beam.The slab was a three-dimensional solid finite element model.The sensitive wavelength irregularity was first studied,and then the safety limit of the sensitive wavelength was analyzed.The wheel-rail lateral force exhibited a substantial effect on the track alignment and gauge irregularity safety limit.The wheel-rail vertical force and the rate of wheel load reduction significantly affected the height and cross-level irregularity safety limit.The results demonstrate that the safety limits of the alignment,gauge,height,and cross-level embedded track geometric irregularity are 5.3 mm,[−10.5,8]mm,5.6 mm,and 6 mm,respectively.
基金supported by the National Science Foundation (U1234201)the Doctorial Innovation Fund of Southwest Jiaotong University
文摘In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.
文摘Because the existing spectral estimation methods for railway track irregularity analysis are very sensitive to outliers, a robust spectral estimation method is presented to process track irregularity signals. The proposed robust method is verified using 100 groups of clean/contaminated data reflecting he vertical profile irregularity taken from Bejing-Guangzhou railway with a sampling frequency of 33 data every ~10 m, and compared with the Auto Regressive (AR) model. The experimental results show that the proposed robust estimation is resistible to noise and insensitive to outliers, and is superior to the AR model in terms of efficiency, stability and reliability.
基金the National Board of Higher Mathematics (NBHM) for their financial support to this research work through Project no. NBHM/R.P.78/ 2015/Fresh/2017/24.1.2017 entitled “Mathematical modeling of elastic wave propagation in highly anisotropic and heterogeneous media”
文摘The present article deals with the stresses developed in an initially stressed irregular viscoelastic half-space clue to a load moving with a constant velocity at a rough free surface. Expressions for normal and shear stresses are obtained in closed form. The substantial effects of influence parameters, viz., depth (from the free surface), irregularity factor, maximum depth of irregularity, viscoelastic parameter, horizontal and vertical initial stresses, and frictional coefficient, on normal and shear stresses are investigated. Moreover, comparative study is carried out for three different cases of irregularity, viz., rectangular irregularity, parabolic irregulariW and no irregularity, which is manifested through graphs.
基金supported by the National Natural Science Foundation (No. 51008256)the Technological Research and Development Programsof the Ministry of Railways (No. 2010G006-B)
文摘The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wheel-rail geometry relationship with the trace line method. The profile of the key rail sections was matched by cubic spline curve, and the shape interpolation was realized in non-controlling sections. The results show that the roll angles at each typical section increases gradually with the enlargement of track alignment irregularity. When the flange contact occurs, the roll angle increases dramatically. Proper track alignment irregularity towards the switch rail improves the structure irregularity of the turnout.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61072012 and 61172009)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61104032)the China Postdoctoral Science Foundation (Grant No. 2012M510750)
文摘The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the 'Zusanli' point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate- independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture.
基金for providing financial support through Project No.SR/S4/ES-246/2006 with title "Investigation of torsional surface waves in nonhomogeneous layered earth".
文摘The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity is taken in the half space in the form of a rectangle. It is observed that torsional surface waves propagate in this assumed medium. In the absence of the irregularity, the velocity equation of the torsional surface wave is also obtained. For a layer over a homogeneous half space, the velocity of torsional surface waves coincides with that of the Love waves.
基金The 13th Five-Year Plan for Advanced Research Program(No.41416030301)
文摘For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the relationship between signal spectral irregularity and target physical properties is theoretically formed.A novel method of broadband underwater target echo detection under reverberation based on the signal spectral irregularity characteristics is proposed.The proposed method has the capability of discriminating between the direct target echo signal from reverberation.Simulation results of complex underwater target broadband acoustic scattering show that the echo can be detected even with the signal to reverberation ratio(SRR)below-10 dB by the proposed method based on the spectral irregularity(SI)feature.The corresponding sea experimental results also show that echo can be detected when the SRR is below 0 dB.The effectiveness and correctness of the proposed method are verified both in simulated data and in real data in sea experiment.
文摘The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver irregularity than conventional methods.Firstly,the chaos character,i.e.fractal dimension,positive Lyapunov exponent,and state space parameters,including time delay and reconstruction dimension,are calculated respectively.As a result,a positive Lyapunov exponent and a fractal dimension are obtained,which demonstrates that the system is chaotic in fact.Secondly,both local linear forecast and global forecast models based on the reconstructed state are adopted to predict a segment part of the sliver irregularity series,which proves the validity of this analysis.Therefore,the sliver irregularity series shows the evidence of chaotic phenomena,and thus laying the theoretical foundation for analyzing and modeling the sliver irregularity series by applying the chaos theory,and providing a new way to understand the complexity of the sliver irregularity much better.
文摘Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.
文摘The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- city of torsional surface waves coincides with that of Love waves.
文摘Longitudinal vibration of wheelset with respect to bogie frame often exists with a high acceleration magnitude and relative high frequency. First, a simplified model with a single wheelset moving at a constant speed on a tangential track with irregularity is used to investigate the longitudinal vibration dynamics. Computional results indicate that the longitudinal vibration frequency of the wheelset is most sensitive to the primary longitudinal stiffness and the mass of the wheelset. As to the locomotive model, the longitudinal vibration is concerned with cross-level irregularity and vertical profile irregularity. Meanwhile, a method to estimate the resonance speed is presented. Finally, a possible solution is brought forward to extend wheel-rail service life by eliminating longitudinal vibration of the wheelset. The solution is simply to arrang the primary vertical damper with a forward angle, so that its damping component can be applied to longimdinal direction.
基金Supported by the National Natural Science Foundation of China(41474134,41474135,41127003)the Hubei Key Laboratory of Intelligent Wireless Communications
文摘Using the empirical ionospheric model, the flux-tube integrated electron density and the ratio between the F-region Pedersen conductivity and the total E- and F-region Pedersen conductivity are calculated to investigate the characteristics of the ionospheric asymmetry after sunset during a solar cycle. Furthermore, two indices representing the asymmetric strength of the parameters respectively are defined to study its relationship with the occurrences of the irregularities during different seasons and with different solar activities. The results indicate that the electron density and the Pedersen conductivity ratio show north-south remarkable hemispheric asymmetry at different solar energy levels. The asymmetric strengths represent the dependence on seasons and solar activities, and their variation depending on seasons and solar activities show a negative correlation with the occurrences of the equatorial irregularities and also have a negative relation with the linear growth rate of the generalized Rayleigh-Taylor instability.
文摘This paper deals with the irregular profile of braced steel frame building in vertical direction with shear link bracing systems.The underlying fact of the paper is the effect of seismic force in braced frames with different types of irregularities including mass irregularity,mass discontinuity and overhanging mass.For each successive model,the position of shear link bracings has been fixed to make the study effective.This study has investigated the vulnerable effect of irregular profiles in steel frame buildings.To attain the behavior of each frame,linear time history analysis method has been adopted for the present study.FEMA356 standard has been used here for linear time history analysis.Investigations on different frames exhibit that regular profile with symmetry in mass is more efficient while using overhanging mass is detrimental considering the time dependent displacements and accelerations.
基金supported by Natural Science Foundation of China(52178441)the Scientific Research Projects of the China Academy of Railway Sciences Co.,Ltd.(Grant No.2022YJ043).
文摘Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time.
基金supported by the National Natural Science Foundation of China(Nos.12372056,12032017,12393783)the S&T Program of Hebei of China(No.24465001D)。
文摘Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.