Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ...Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.展开更多
To explore the denitration mechanism of iron-vanadium/activated carbon(Fe-V/AC)catalysts in ammonia-selective catalytic reduction(NH_(3)-SCR),the physicochemical properties of Fe-V/AC catalysts were characterized.The ...To explore the denitration mechanism of iron-vanadium/activated carbon(Fe-V/AC)catalysts in ammonia-selective catalytic reduction(NH_(3)-SCR),the physicochemical properties of Fe-V/AC catalysts were characterized.The denitration activities of the Fe-V/AC catalysts in the range of 150-300℃ were evaluated.The increase in denitration temperature leads to the highest and fastest recovery rate of NO conversion in the 10Fe-15V/AC catalyst.However,more metal oxides were attached to the catalyst surface as the V loading increased,and the accumulation occurred.The surface-active components are FeO,Fe_(2)O_(3),Fe_(3)O_(4),VO_(2),and V_(2)O_(5).In addition,the increase in the V loading induced a series of modification effects.A large amount of Fe^(3+)was reduced to Fe^(2+),and a large amount of V^(4+)was oxidized to V^(5+).The surface oxygen species(O_(α))were transformed into lattice oxygen(O_(β)).The presence of a large amount of V species deteriorated the pore-structure parameters and destroyed the oxygen-containing functional groups.Increasing the V loading can effectively increase the Lewis acid sites,thereby promoting NH_(3) adsorption and NO reduction and increasing the stretching vibration of weakly adsorbed ammonia species on the catalyst.The NH_(3) adsorption process produces a notable increase in the concentration of monodentate nitrite(NH_(4)^(+)).The NH_(3)-SCR denitration mechanism of the Fe-V/AC catalyst includes reaction gas adsorption,catalytic denitration of metal active components,and gas desorption.展开更多
文摘Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.
基金financially supported by National Natural Science Foundation of China(No.52264043).
文摘To explore the denitration mechanism of iron-vanadium/activated carbon(Fe-V/AC)catalysts in ammonia-selective catalytic reduction(NH_(3)-SCR),the physicochemical properties of Fe-V/AC catalysts were characterized.The denitration activities of the Fe-V/AC catalysts in the range of 150-300℃ were evaluated.The increase in denitration temperature leads to the highest and fastest recovery rate of NO conversion in the 10Fe-15V/AC catalyst.However,more metal oxides were attached to the catalyst surface as the V loading increased,and the accumulation occurred.The surface-active components are FeO,Fe_(2)O_(3),Fe_(3)O_(4),VO_(2),and V_(2)O_(5).In addition,the increase in the V loading induced a series of modification effects.A large amount of Fe^(3+)was reduced to Fe^(2+),and a large amount of V^(4+)was oxidized to V^(5+).The surface oxygen species(O_(α))were transformed into lattice oxygen(O_(β)).The presence of a large amount of V species deteriorated the pore-structure parameters and destroyed the oxygen-containing functional groups.Increasing the V loading can effectively increase the Lewis acid sites,thereby promoting NH_(3) adsorption and NO reduction and increasing the stretching vibration of weakly adsorbed ammonia species on the catalyst.The NH_(3) adsorption process produces a notable increase in the concentration of monodentate nitrite(NH_(4)^(+)).The NH_(3)-SCR denitration mechanism of the Fe-V/AC catalyst includes reaction gas adsorption,catalytic denitration of metal active components,and gas desorption.