Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise str...Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection.Here,a bimetallic(FeNi)nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method,and then functionalized with four anions(P,Se,S,and O).Notably,the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst shows a high conductivity,enhances the adsorption of intermediate products,accelerates the rate-determining step,and consequently results to improved electrocatalytic performance.Using the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst exhibits enhanced performance with overpotential of 316mV at 10 mA/cm^(2),in stark contrast to Fe_(2) P/Ni_(2)P(357mV),Fe_(7)S_(8)/NiS(379 mV),and Fe_(3)O_(4)/NiO(464 mV).Moreover,the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties,are elucidated.Accordingly,this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52222317,21902144,52225208)the“Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang”(No.2020R01002)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LZ23E020002)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RFC2023002).
文摘Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection.Here,a bimetallic(FeNi)nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method,and then functionalized with four anions(P,Se,S,and O).Notably,the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst shows a high conductivity,enhances the adsorption of intermediate products,accelerates the rate-determining step,and consequently results to improved electrocatalytic performance.Using the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst exhibits enhanced performance with overpotential of 316mV at 10 mA/cm^(2),in stark contrast to Fe_(2) P/Ni_(2)P(357mV),Fe_(7)S_(8)/NiS(379 mV),and Fe_(3)O_(4)/NiO(464 mV).Moreover,the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties,are elucidated.Accordingly,this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future.