Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed t...Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.展开更多
Iron-based metal matrix composites(IMMCs)have attracted significant research attention due to their high specific stiffness and strength,making them potentially suitable for various engineering applications.Microstruc...Iron-based metal matrix composites(IMMCs)have attracted significant research attention due to their high specific stiffness and strength,making them potentially suitable for various engineering applications.Microstructural design,including the selection of reinforcement and matrix phases,the reinforcement volume fraction,and the interface issues are essential factors determining the engineering performance of IMMCs.A variety of fabrication methods have been developed to manufacture IMMCs in recent years.This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design,fabrication methods,and their engineering performance.The microstructure design issues of IMMC are firstly discussed,including the reinforcement and matrix phase selection criteria,interface geometry and characteristics,and the bonding mechanism.The fabrication methods,including liquid state,solid state,and gas-mixing processing are comprehensively reviewed and compared.The engineering performance of IMMCs in terms of elastic modulus,hardness and wear resistance,tensile and fracture behavior is reviewed.Finally,the current challenges of the IMMCs are highlighted,followed by the discussion and outlook of the future research directions of IMMCs.展开更多
We report the crystal growth of a new hole-doped iron-based superconductor Ba(Fe_(0.875)Ti_(0.125))_(2)As_(2)by substituting Ti on the Fe site.The crystals are accidentally obtained in trying to grow Ni doped Ba_(2)Ti...We report the crystal growth of a new hole-doped iron-based superconductor Ba(Fe_(0.875)Ti_(0.125))_(2)As_(2)by substituting Ti on the Fe site.The crystals are accidentally obtained in trying to grow Ni doped Ba_(2)Ti_(2)Fe_(2)As_(4)O.After annealing at 500℃ in vacuum for one week,superconductivity is observed with zero resistance at T_(c0)≈17.5 K,and about 20%diamagnetic volume down to 2 K.While both the small anisotropy of superconductivity and the temperature dependence of normal state resistivity are akin to the electron doped 122-type compounds,the Hall coefficient is positive and similar to the case in hole-doped Ba_(0.9)K_(0.1)Fe_(2)As2.The density functional theory calculations suggest dominated hole pockets contributed by Fe/Ti 3d orbitals.Therefore,the Ba(Fe_(1-x)Ti_(x))_(2)As_(2)system provides a new platform to study the superconductivity with hole doping on the Fe site of iron-based superconductors.展开更多
Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(...Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been construc...Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.展开更多
Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for mor...Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for more than 3y.She was diagnosed with ASs and choroiditis at a local hospital.She has a seven-year history of bilateral high myopia.A fundus examination confirmed the presence of ASs and myopic fundus changes in both eyes.Multimodal imaging revealed an AZOOR complex in the left eye.展开更多
The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when th...The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.展开更多
Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current ev...Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.展开更多
A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basici...A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).展开更多
Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple...Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple process, and zero carbon emission, is considered one of the most promising processes for producing carbon-neutral hydrogen which has excellent energy conversion efficiency and high gravimetric energy density. Among them, oxygen evolution reaction (OER) electrocatalysts and hydrogen evolution reaction (HER) electrocatalysts are critical to decreasing the intrinsic reaction energy barrier and boosting the hydrogen evolution efficiency. Therefore, it is imperative to develop and design low-cost, highly active, and stable OER and HER electrocatalysts to lower the overpotential and drive the electrocatalytic reactions. Transition metal sulfides, especially iron-based sulfides, have attracted extensive exploration by researchers as a result of its high abundance in the Earth's crust and near-metallic conductivity. Consequently, in this review, we systematically and comprehensively summarize the progress in the application of iron-based sulfides and their composites as OER and HER electrocatalysts in electrocatalysis. Detailed descriptions and illustrations of the special relationships among their composition, structure, and electrocatalytic performance are presented. Finally, this review points out the challenges and future prospects of iron-based sulfides in practical applications for designing and fabricating more promising iron-based sulfide OER and HER electrocatalysts. We believe that iron-based sulfide materials will have a wide range of application prospects as OER and HER electrocatalysts in the future.展开更多
SiC magnetic abrasive is used to polish surfaces of precise,complex parts which are hard,brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF).Various techniques are employed to produce this magne...SiC magnetic abrasive is used to polish surfaces of precise,complex parts which are hard,brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF).Various techniques are employed to produce this magnetic abrasive,but few can meet production demands because they are usually time-consuming,complex with high cost,and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life.Therefore,an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive.The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive.The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly.Its morphology,microstructure,phase composition are characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD)analysis.The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive.The surface roughness(Ra)of the plate worked is rapidly reduced to 0.051μm from an initial value of 0.372μm within 5 min.The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min.The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive;and compared with previous magnetic abrasives,the new SiC spherical composite magnetic abrasive has excellent finishing performance,high processing efficiency and longer service life.The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive,and provide a more practical approach for large-scale industrial production of magnetic abrasive.展开更多
The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidiz...The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO2./O2^-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested.展开更多
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz...A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.展开更多
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in i...Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.展开更多
The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first clas...The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first class of HTSCs which possess the essential CuO2 sheets. So far, dozens of iron-based HTSCs, classified into nine groups, have been discovered. In this article, the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing "hard and soft acids and bases (HSAB)" concept. Based on these understandings, we propose an alternative route to exploring new iron-based superconductors via rational structural design.展开更多
Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES per...Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.展开更多
Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to uti...Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.展开更多
Lithium-sulfur(Li-S)battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity(1673 m Ah/g),high energy densi...Lithium-sulfur(Li-S)battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity(1673 m Ah/g),high energy density(2500 Wh/kg),low cost,and environmentally friendliness of sulfur.However,critical drawbacks,including inherent low conductivity of sulfur and Li2S,large volume changes of sulfur cathodes,undesirable shuttling and sluggish redox kinetics of polysulfides,seriously deteriorate the energy density,cycle life and rate capability of Li-S battery,and thus limit its practical applications.Herein,we reviewed the recent developments addressing these problems through iron-based nanomaterials for effective synergistic immobilization as well as conversion reaction kinetics acceleration for polysulfides.The mechanist configurations between different iron-based nanomaterials and polysulfides for entrapment and conversion acceleration were summarized at first.Then we concluded the recent progresses on utilizing various iron-based nanomaterials in Li-S battery as sulfur hosts,separators and cathode interlayers.Finally,we discussed the challenges and perspectives for designing high sulfur loading cathode architectures along with outstanding chemisorption capability and catalytic activity.展开更多
The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curv...The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.展开更多
基金Supported by the Special Funds for Major State Basic Research Projects( No.G19990 64 80 0 ),the National NaturalScience Foundation of China( No.2 973 4141) ,and SKL EP ( 0 0 62 ) ,SINOPEC and CNPC.
文摘Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.
基金funding support from the National Natural Science Foundation of China(No.52101046)Shuangjie Chu appreciates the funding support from the National Key Research and Development Program of China(No.2022YFB3705600).
文摘Iron-based metal matrix composites(IMMCs)have attracted significant research attention due to their high specific stiffness and strength,making them potentially suitable for various engineering applications.Microstructural design,including the selection of reinforcement and matrix phases,the reinforcement volume fraction,and the interface issues are essential factors determining the engineering performance of IMMCs.A variety of fabrication methods have been developed to manufacture IMMCs in recent years.This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design,fabrication methods,and their engineering performance.The microstructure design issues of IMMC are firstly discussed,including the reinforcement and matrix phase selection criteria,interface geometry and characteristics,and the bonding mechanism.The fabrication methods,including liquid state,solid state,and gas-mixing processing are comprehensively reviewed and compared.The engineering performance of IMMCs in terms of elastic modulus,hardness and wear resistance,tensile and fracture behavior is reviewed.Finally,the current challenges of the IMMCs are highlighted,followed by the discussion and outlook of the future research directions of IMMCs.
基金supported by the National Key R&D Program of China(Grant Nos.2023YFA1406100,2022YFA1403800,2022YFA1403400,and 2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.12274444 and 12574165)+1 种基金the Chinese Academy of Sciences(Grant No.XDB25000000)financial support from HBNI-RRCAT。
文摘We report the crystal growth of a new hole-doped iron-based superconductor Ba(Fe_(0.875)Ti_(0.125))_(2)As_(2)by substituting Ti on the Fe site.The crystals are accidentally obtained in trying to grow Ni doped Ba_(2)Ti_(2)Fe_(2)As_(4)O.After annealing at 500℃ in vacuum for one week,superconductivity is observed with zero resistance at T_(c0)≈17.5 K,and about 20%diamagnetic volume down to 2 K.While both the small anisotropy of superconductivity and the temperature dependence of normal state resistivity are akin to the electron doped 122-type compounds,the Hall coefficient is positive and similar to the case in hole-doped Ba_(0.9)K_(0.1)Fe_(2)As2.The density functional theory calculations suggest dominated hole pockets contributed by Fe/Ti 3d orbitals.Therefore,the Ba(Fe_(1-x)Ti_(x))_(2)As_(2)system provides a new platform to study the superconductivity with hole doping on the Fe site of iron-based superconductors.
文摘Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
文摘Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.
基金Supported by the National Natural Science Foundation of China(No.82171073).
文摘Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for more than 3y.She was diagnosed with ASs and choroiditis at a local hospital.She has a seven-year history of bilateral high myopia.A fundus examination confirmed the presence of ASs and myopic fundus changes in both eyes.Multimodal imaging revealed an AZOOR complex in the left eye.
文摘The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.
文摘Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.
基金Foundation item:the National Natural Science Foundation of China(20590360)the Natural Science Foundation of Shanxi Province(2006021014)+1 种基金the National Outstanding Young Scientists Foundation of China(20625620)National Key Basic Research Program of China(973 Program)(2007CB216401).
文摘A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).
基金the National Natural Science Foundation of China(No.22275052)the Natural Science Foundation of Hubei Province(No.2019CFB569)。
文摘Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple process, and zero carbon emission, is considered one of the most promising processes for producing carbon-neutral hydrogen which has excellent energy conversion efficiency and high gravimetric energy density. Among them, oxygen evolution reaction (OER) electrocatalysts and hydrogen evolution reaction (HER) electrocatalysts are critical to decreasing the intrinsic reaction energy barrier and boosting the hydrogen evolution efficiency. Therefore, it is imperative to develop and design low-cost, highly active, and stable OER and HER electrocatalysts to lower the overpotential and drive the electrocatalytic reactions. Transition metal sulfides, especially iron-based sulfides, have attracted extensive exploration by researchers as a result of its high abundance in the Earth's crust and near-metallic conductivity. Consequently, in this review, we systematically and comprehensively summarize the progress in the application of iron-based sulfides and their composites as OER and HER electrocatalysts in electrocatalysis. Detailed descriptions and illustrations of the special relationships among their composition, structure, and electrocatalytic performance are presented. Finally, this review points out the challenges and future prospects of iron-based sulfides in practical applications for designing and fabricating more promising iron-based sulfide OER and HER electrocatalysts. We believe that iron-based sulfide materials will have a wide range of application prospects as OER and HER electrocatalysts in the future.
基金supported by National Natural Science Foundation of China(Grant No.50775133)
文摘SiC magnetic abrasive is used to polish surfaces of precise,complex parts which are hard,brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF).Various techniques are employed to produce this magnetic abrasive,but few can meet production demands because they are usually time-consuming,complex with high cost,and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life.Therefore,an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive.The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive.The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly.Its morphology,microstructure,phase composition are characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD)analysis.The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive.The surface roughness(Ra)of the plate worked is rapidly reduced to 0.051μm from an initial value of 0.372μm within 5 min.The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min.The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive;and compared with previous magnetic abrasives,the new SiC spherical composite magnetic abrasive has excellent finishing performance,high processing efficiency and longer service life.The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive,and provide a more practical approach for large-scale industrial production of magnetic abrasive.
基金supported by the National Natural Science Foundation of China (Nos. 21107125, 21577160, 51221892, 51290282 and 41201498)
文摘The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO2./O2^-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested.
基金The financial support from the National Natural Science Foundation of China (20590361)the National Outstanding Young Scientists Foundation of China (20625620)
文摘A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.
基金supported by National Natural Science Foundation of China(No.51374040)the National Key Scientific Instrument and Equipment Development Project of China(No.2014YQ120351)
文摘Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.
基金supported by the National Natural Science Foundation of China(Grant Nos.90922002 and 11190023)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013FZA3003)
文摘The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first class of HTSCs which possess the essential CuO2 sheets. So far, dozens of iron-based HTSCs, classified into nine groups, have been discovered. In this article, the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing "hard and soft acids and bases (HSAB)" concept. Based on these understandings, we propose an alternative route to exploring new iron-based superconductors via rational structural design.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB921400,2011CB921802,and 2011CBA00112)
文摘Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.
基金the National Natural Science Foundation of China-Outstanding Youth Foundation (No. 22322814)the National Natural Science Foundation of China (No. 22108144)the Natural Science Foundation of Shandong-Outstanding Youth Foundation (No. ZR2023YQ017)。
文摘Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.
基金financially supported by National Natural Science Foundation of China(Nos.51702362 and 21875282)Natural Science Foundation of Hunan Province(Nos.2022JJ30663,2022JJ40551)+1 种基金Scientific Research Project of National University of Defense Technology(No.ZK19–27)Significant Independent Research Projects for Young Talents of College of Aerospace Science and Engineering,National University of Defense Technology。
文摘Lithium-sulfur(Li-S)battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity(1673 m Ah/g),high energy density(2500 Wh/kg),low cost,and environmentally friendliness of sulfur.However,critical drawbacks,including inherent low conductivity of sulfur and Li2S,large volume changes of sulfur cathodes,undesirable shuttling and sluggish redox kinetics of polysulfides,seriously deteriorate the energy density,cycle life and rate capability of Li-S battery,and thus limit its practical applications.Herein,we reviewed the recent developments addressing these problems through iron-based nanomaterials for effective synergistic immobilization as well as conversion reaction kinetics acceleration for polysulfides.The mechanist configurations between different iron-based nanomaterials and polysulfides for entrapment and conversion acceleration were summarized at first.Then we concluded the recent progresses on utilizing various iron-based nanomaterials in Li-S battery as sulfur hosts,separators and cathode interlayers.Finally,we discussed the challenges and perspectives for designing high sulfur loading cathode architectures along with outstanding chemisorption capability and catalytic activity.
文摘The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.