Two new acylated C-glycosylflavones were isolated from the leaves of Iris lactea var. chinensis, and their structures were elucidated on the basis of extensive NMR experiments and mass spectrometry methods and were as...Two new acylated C-glycosylflavones were isolated from the leaves of Iris lactea var. chinensis, and their structures were elucidated on the basis of extensive NMR experiments and mass spectrometry methods and were assigned as 5-hydroxy-4'- methoxyflavone-7-O-(β-D-2''''4''''-diacetylrhamnopyranosyl)-6-C-[ O-(α-L-6'''-acetyl-glucpyranosyl)-1→2-β-D-glucopyrano- side] (irislactin A) and 5-hydroxy-4',7-dimethoxyflavone-6-C-[O-(α-L-2''',3'''-diacetylrhanmo-pyranosyl)-1→ 2-β-D-glucopyranoside] (irislactin B).展开更多
To understand arbuscular mycorrhizal(AM)fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances,Iris lactea,which grows in the Songnen saline-alkaline grassland with a high o...To understand arbuscular mycorrhizal(AM)fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances,Iris lactea,which grows in the Songnen saline-alkaline grassland with a high ornamental value,was selected as the experimental material,and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored.The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I.lactea and formed Arum-type mycorrhizal structures.There was a significant correlation between soil spore density and pH value,while the colonization rate showed a fluctuating trend with increasing pH values.The observed colonization intensities were of Levels II(1%–10%)or III(11%–50%),and the vesicle abundances were of grades A2 or A3 among different sites.AM fungi produced a large number of mycelia and vesicles in the roots of I.lactea after colonization.Thirty-seven species belonging to 15 genera of AM fungi were isolated from the rhizosphere of I.lactea and identified by morphological identification.Funneliformis and Glomus were the dominant genera,accounting for 21.79%and 20.85%of the total number,respectively.F.mosseae and Rhizophagus intraradices were isolated in all samples with importance values of 58.62 and 51.19,respectively.These results are expected to provide a theoretical basis for the analysis of the salt tolerance mechanism of I.lactea and for the discovery,exploration and further screening of AM fungal resources with salinity tolerances in saline-alkaline soils.展开更多
Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush ...Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush herb with high resistance of Pb and wide adaptability,was used in pot experiments to study the effects of exogenous nitrate N(NO_(3)^(–)-N)on the absorption and transportation of Pb and plant growth under different Pb concentrations.Then,the mechanism of NO_(3)^(-)-N affecting Pb and nutrient uptake and transport was explored.The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg,and the added concentration of NO_(3)^(-)-N was 0.0–0.3 g/kg.The results showed that I.lactea was highly tolerant to Pb,and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction.This protective function became more pronounced under the condition of raised Pb concentration in the soil.When the concentration of Pb in the soil reached 800 mg/kg,the highest Pb content of I.lactea was found under the condition of 0.1 g/kg of NO–3-N addition.When Pb concentration in the soil increased to 1600 mg/kg,the increase in NO_(3)^(-)-N addition promoted Pb uptake by the root.To ensure the well growth of I.lactea and the effect of remediation of Pb-contaminated soil,the recommended concentration of NO–3-N in the soil is 0.1 g/kg.This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil.展开更多
Chinese iris (Iris lactea Pall. var. chinensis (Fisch) Koidz.), a robust iridaceous plant, is widespread in arid and semiarid regions with high salinity. However, the mechanism of its salt tolerance is not well un...Chinese iris (Iris lactea Pall. var. chinensis (Fisch) Koidz.), a robust iridaceous plant, is widespread in arid and semiarid regions with high salinity. However, the mechanism of its salt tolerance is not well understood. In this study, plant growth, water status, content and distribution of inorganic ions, cell membrane permeability, and proline content of I. laetea under salt stress were investigated using nutrient solutions with six NaCl concentrations ranging from 0 to 350 mmol L^-1. The results indicated that the biomass, height, fresh weight, K^+ content, and K^+/Na^+ and Ca^2+/Na^+ ratios decreased with increasing NaCl stress, whereas plant water deficit and contents of Na^+ and Cl- increased with increasing NaCl stress. In all salt treatments, water deficit of shoots was found to be higher than that of roots and had a positive correlation with salt concentration. When the NaCl concentration was less than 280 mmol L^-1, the ion absorption selectivity ratio and the transportation selectivity ratio sharply increased with increasing NaCl stress. Under medium salt stress, I. lactea exhibited a strong K^+ selective absorption and the transportation of K^+ from roots to shoots increased, whereas Na^+ was not transported and was mostly retained in roots. The plants were able to maintain osmotic adjustment through the accumulation of Na^+, Cl-, and proline. On the basis of its biomass production under salt stress, I. lactea could be considered as a facultative halophyte.展开更多
Maintenance of ion homeostasis,particularly the regulation of K^(+)and Na^(+)uptake,is important for all plants to adapt to salinity.Observations on ionic response to salinity and net fluxes of K^(+),Na^(+)in the root...Maintenance of ion homeostasis,particularly the regulation of K^(+)and Na^(+)uptake,is important for all plants to adapt to salinity.Observations on ionic response to salinity and net fluxes of K^(+),Na^(+)in the root exhibited by plants during salt stress have highlighted the need for further investigation.The objectives of this study were to compare salt adaptation of two Chinese Iris(Iris lactea Pall.var.chinensis(Fisch.)Koidz.)populations,and to improve understanding of adaptation to salinity exhibited by plants.Plants used in this study were grown from seeds collected in the Xinjiang Uygur Autonomous Region(Xj)and Beijing Municipality(Bj),China.Hydroponicallygrown seedlings of the two populations were supplied with nutrient solutions containing 0.1(control)and 140 mmol·L^(–1) NaCl.After 12 days,plants were harvested for determination of relative growth rate and K^(+),Na^(+)concentrations.Net fluxes of K^(+),Na^(+)from the apex and along the root axis to 10.8 mm were measured using noninvasive micro-test technique.With 140 mmol·L^(–1) NaCl treatment,shoots for population Xj had larger relative growth rate and higher K^(+)concentration than shoots for population Bj.However,the Na^(+)concentrations in both shoots and roots were lower for Xj than those for Bj.There was a lower net efflux of K^(+)found in population Xj than by Bj in the mature zone(approximately 2.4^(–1)0.8 mm from root tip).However,no difference in the efflux of Na^(+)between the populations was obtained.Population Xj of I.lactea continued to grow normally under NaCl stress,and maintained a higher K^(+)/Na^(+)ratio in the shoots.These traits,which were associated with lower K^(+)leakage,help population Xj adapt to saline environments.展开更多
基金the National Natural Science Foundation of China (No.30170103).
文摘Two new acylated C-glycosylflavones were isolated from the leaves of Iris lactea var. chinensis, and their structures were elucidated on the basis of extensive NMR experiments and mass spectrometry methods and were assigned as 5-hydroxy-4'- methoxyflavone-7-O-(β-D-2''''4''''-diacetylrhamnopyranosyl)-6-C-[ O-(α-L-6'''-acetyl-glucpyranosyl)-1→2-β-D-glucopyrano- side] (irislactin A) and 5-hydroxy-4',7-dimethoxyflavone-6-C-[O-(α-L-2''',3'''-diacetylrhanmo-pyranosyl)-1→ 2-β-D-glucopyranoside] (irislactin B).
基金This work was supported by the National Natural Science Foundation of China(31601986)the Fundamental Research Funds for the Central Universities(2572018BK02)Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘To understand arbuscular mycorrhizal(AM)fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances,Iris lactea,which grows in the Songnen saline-alkaline grassland with a high ornamental value,was selected as the experimental material,and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored.The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I.lactea and formed Arum-type mycorrhizal structures.There was a significant correlation between soil spore density and pH value,while the colonization rate showed a fluctuating trend with increasing pH values.The observed colonization intensities were of Levels II(1%–10%)or III(11%–50%),and the vesicle abundances were of grades A2 or A3 among different sites.AM fungi produced a large number of mycelia and vesicles in the roots of I.lactea after colonization.Thirty-seven species belonging to 15 genera of AM fungi were isolated from the rhizosphere of I.lactea and identified by morphological identification.Funneliformis and Glomus were the dominant genera,accounting for 21.79%and 20.85%of the total number,respectively.F.mosseae and Rhizophagus intraradices were isolated in all samples with importance values of 58.62 and 51.19,respectively.These results are expected to provide a theoretical basis for the analysis of the salt tolerance mechanism of I.lactea and for the discovery,exploration and further screening of AM fungal resources with salinity tolerances in saline-alkaline soils.
基金supported by the National Natural Science Foundation of China(51978659).
文摘Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush herb with high resistance of Pb and wide adaptability,was used in pot experiments to study the effects of exogenous nitrate N(NO_(3)^(–)-N)on the absorption and transportation of Pb and plant growth under different Pb concentrations.Then,the mechanism of NO_(3)^(-)-N affecting Pb and nutrient uptake and transport was explored.The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg,and the added concentration of NO_(3)^(-)-N was 0.0–0.3 g/kg.The results showed that I.lactea was highly tolerant to Pb,and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction.This protective function became more pronounced under the condition of raised Pb concentration in the soil.When the concentration of Pb in the soil reached 800 mg/kg,the highest Pb content of I.lactea was found under the condition of 0.1 g/kg of NO–3-N addition.When Pb concentration in the soil increased to 1600 mg/kg,the increase in NO_(3)^(-)-N addition promoted Pb uptake by the root.To ensure the well growth of I.lactea and the effect of remediation of Pb-contaminated soil,the recommended concentration of NO–3-N in the soil is 0.1 g/kg.This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil.
基金the National Natural Science Foundation of China (No.30170671).
文摘Chinese iris (Iris lactea Pall. var. chinensis (Fisch) Koidz.), a robust iridaceous plant, is widespread in arid and semiarid regions with high salinity. However, the mechanism of its salt tolerance is not well understood. In this study, plant growth, water status, content and distribution of inorganic ions, cell membrane permeability, and proline content of I. laetea under salt stress were investigated using nutrient solutions with six NaCl concentrations ranging from 0 to 350 mmol L^-1. The results indicated that the biomass, height, fresh weight, K^+ content, and K^+/Na^+ and Ca^2+/Na^+ ratios decreased with increasing NaCl stress, whereas plant water deficit and contents of Na^+ and Cl- increased with increasing NaCl stress. In all salt treatments, water deficit of shoots was found to be higher than that of roots and had a positive correlation with salt concentration. When the NaCl concentration was less than 280 mmol L^-1, the ion absorption selectivity ratio and the transportation selectivity ratio sharply increased with increasing NaCl stress. Under medium salt stress, I. lactea exhibited a strong K^+ selective absorption and the transportation of K^+ from roots to shoots increased, whereas Na^+ was not transported and was mostly retained in roots. The plants were able to maintain osmotic adjustment through the accumulation of Na^+, Cl-, and proline. On the basis of its biomass production under salt stress, I. lactea could be considered as a facultative halophyte.
基金This work was supported financially by the National Natural Science Foundation of China(31370351 and 30870237)the Doctoral Program of Higher Education of the Special Research Doctoral Advisor Fund of China(20110008110035).
文摘Maintenance of ion homeostasis,particularly the regulation of K^(+)and Na^(+)uptake,is important for all plants to adapt to salinity.Observations on ionic response to salinity and net fluxes of K^(+),Na^(+)in the root exhibited by plants during salt stress have highlighted the need for further investigation.The objectives of this study were to compare salt adaptation of two Chinese Iris(Iris lactea Pall.var.chinensis(Fisch.)Koidz.)populations,and to improve understanding of adaptation to salinity exhibited by plants.Plants used in this study were grown from seeds collected in the Xinjiang Uygur Autonomous Region(Xj)and Beijing Municipality(Bj),China.Hydroponicallygrown seedlings of the two populations were supplied with nutrient solutions containing 0.1(control)and 140 mmol·L^(–1) NaCl.After 12 days,plants were harvested for determination of relative growth rate and K^(+),Na^(+)concentrations.Net fluxes of K^(+),Na^(+)from the apex and along the root axis to 10.8 mm were measured using noninvasive micro-test technique.With 140 mmol·L^(–1) NaCl treatment,shoots for population Xj had larger relative growth rate and higher K^(+)concentration than shoots for population Bj.However,the Na^(+)concentrations in both shoots and roots were lower for Xj than those for Bj.There was a lower net efflux of K^(+)found in population Xj than by Bj in the mature zone(approximately 2.4^(–1)0.8 mm from root tip).However,no difference in the efflux of Na^(+)between the populations was obtained.Population Xj of I.lactea continued to grow normally under NaCl stress,and maintained a higher K^(+)/Na^(+)ratio in the shoots.These traits,which were associated with lower K^(+)leakage,help population Xj adapt to saline environments.