Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determin...Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end.展开更多
Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity...Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity hydrogen for aerospace and high-end manufacturing applications. Withthe ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction(OER) catalysts remains imperative to reconcile stringent requirements for high activity, extendedlongevity, and minimized noble metal loading. The review provides a systematic analysis of theintegrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER,including the operation environment of OER catalysts, catalytic performance evaluation withinPEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classificationand preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategiesfor performance enhancement is presented. Specifically, we construct a mathematical frameworkfor cost-performance optimization to offer quantitative guidance for catalyst design. Finally, futureperspectives are proposed, aiming to establish a theoretical framework for rational catalyst design.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB4004100)National Natural Science Foundation of China(Nos.U22A20396,22209168)+1 种基金Natural Science Foundation of Anhui Province(No.2208085UD04)Liaoning Binhai Laboratory(No.LBLF-2023-04),and Shandong Energy Institute(No.SEI U202307).
文摘Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end.
文摘Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity hydrogen for aerospace and high-end manufacturing applications. Withthe ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction(OER) catalysts remains imperative to reconcile stringent requirements for high activity, extendedlongevity, and minimized noble metal loading. The review provides a systematic analysis of theintegrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER,including the operation environment of OER catalysts, catalytic performance evaluation withinPEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classificationand preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategiesfor performance enhancement is presented. Specifically, we construct a mathematical frameworkfor cost-performance optimization to offer quantitative guidance for catalyst design. Finally, futureperspectives are proposed, aiming to establish a theoretical framework for rational catalyst design.