Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effecti...Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effectively carbothermally reduce the O/Si atomic ratio,enhancing the electrochemical activity of the SiOx component.The micron-sized SiOx/C spheres are composed of many near-spherical nanoparticles.The synthesized SiOx/C exhibits a stable and high reversible capacity of 830 m A·h·g^-1 for 100 cycles,and excellent rate-capability.The homogeneous dispersion structure of phases,the micro/nanostructure and the high electrochemical activity of SiOx component combinedly contribute the excellent electrochemical performance.展开更多
基金supported by the National Natural Science Foundation of China(51602313 and 51764008)Science and Technology Project of Guizhou Province(Qiankehe No.2016,7439).
文摘Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effectively carbothermally reduce the O/Si atomic ratio,enhancing the electrochemical activity of the SiOx component.The micron-sized SiOx/C spheres are composed of many near-spherical nanoparticles.The synthesized SiOx/C exhibits a stable and high reversible capacity of 830 m A·h·g^-1 for 100 cycles,and excellent rate-capability.The homogeneous dispersion structure of phases,the micro/nanostructure and the high electrochemical activity of SiOx component combinedly contribute the excellent electrochemical performance.