Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the s...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg_(3)Al)to 1(Ir/Mg_(3)Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg_(3)Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg_(3)Al_(1–x)Fex support to the dispersed Ir particles and the surface geometry.展开更多
The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-C...The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.展开更多
Interface engineering is a prospective method for improving electrochemical performance,while efficient interfacial tuning is still difficult.Here,a series of WO_(3)-Ir catalysts with tuned interfaces were obtained fr...Interface engineering is a prospective method for improving electrochemical performance,while efficient interfacial tuning is still difficult.Here,a series of WO_(3)-Ir catalysts with tuned interfaces were obtained from WO_(3)support with different surface states.The prepared WO_(3)-O-Ir catalyst with higher interfacial oxygen content shows excellent hydrogen oxidation reaction activity with a mass activity of 54.04 A gIr^(-1)for hydrogen oxidation reaction,which is superior to WO_(3)-W-Ir with higher tungsten content and even commercial Pt/C catalysts.Theoretical calculation and X-ray photoelectron spectroscopy valence band spectrum analyses verify that the position of the d-band center is directly proportional to the interfacial oxygen content.This modulates the electronic structure of the active phase,increasing the binding energy for OH species and enhancing their adsorption capacity,which boost the performance for hydrogen oxidation reaction.展开更多
In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different no...In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.展开更多
Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. ...Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst.展开更多
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption o...The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.展开更多
研究电流型电化学氨气传感器阳极碳载Ir(Ir/C)催化剂电催化NH3氧化性能.实验表明,在NaC lO4中性电解液中,Ir/C催化剂对NH3氧化的电催化性能与Ir载量有关.其中以Ir载量为10%(by m ass)的Ir/C催化剂的电催化性能最好,稳定性和灵敏度也最高...研究电流型电化学氨气传感器阳极碳载Ir(Ir/C)催化剂电催化NH3氧化性能.实验表明,在NaC lO4中性电解液中,Ir/C催化剂对NH3氧化的电催化性能与Ir载量有关.其中以Ir载量为10%(by m ass)的Ir/C催化剂的电催化性能最好,稳定性和灵敏度也最高.此外,NH3在不同载量的Ir/C催化剂上电催化氧化的电流密度与NH3浓度均呈现出良好的线性关系,此类Ir/C催化剂在电流型电化学氨气传感器中可望有良好的应用前景.展开更多
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg_(3)Al)to 1(Ir/Mg_(3)Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg_(3)Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg_(3)Al_(1–x)Fex support to the dispersed Ir particles and the surface geometry.
基金National Natural Science Foundation of China (20590360)New Century Excellent Talent Project of China (NCET-05-0783)
文摘The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.
基金financially supported by the National Natural Science Foundation of China(Nos.21776115 and 51902140)the project from Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,No.2024-KF-24)the open project from Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China(School of Chemistry and Life Science,Suzhou University of Science and Technology)
文摘Interface engineering is a prospective method for improving electrochemical performance,while efficient interfacial tuning is still difficult.Here,a series of WO_(3)-Ir catalysts with tuned interfaces were obtained from WO_(3)support with different surface states.The prepared WO_(3)-O-Ir catalyst with higher interfacial oxygen content shows excellent hydrogen oxidation reaction activity with a mass activity of 54.04 A gIr^(-1)for hydrogen oxidation reaction,which is superior to WO_(3)-W-Ir with higher tungsten content and even commercial Pt/C catalysts.Theoretical calculation and X-ray photoelectron spectroscopy valence band spectrum analyses verify that the position of the d-band center is directly proportional to the interfacial oxygen content.This modulates the electronic structure of the active phase,increasing the binding energy for OH species and enhancing their adsorption capacity,which boost the performance for hydrogen oxidation reaction.
基金supported by the National Natural Science Foundation of China(No.21106143,No.21277140)100-Talent Project of Dalian Institute of Chemical Physics(DICP)+1 种基金the Independent Innovation Foundation of State Key Laboratory of Catalysis(No.R201113)the Zhejiang Provincial Natural Science Foundation of China(LR12E02001)
文摘In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.
基金This study was supported by the grant of 2004C31053 from the Ministry of Science and Technology of Zhejiang Province, China, and the grant of Y404305 from the Natural Science Foundation of Zhejiang Province, Chinathe grant of 20673101, 20673102 from National Natural Science Foundation of China.
文摘Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst.
基金financially supported by the National Natural Science Foundation of China(No.20903054)Liaoning Provincial Natural Science Foundation(No.2014020107)+1 种基金Program for Liaoning excellent talents in university(No.LJQ2014041)sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(SRF for ROCS,SEM)
文摘The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.
文摘研究电流型电化学氨气传感器阳极碳载Ir(Ir/C)催化剂电催化NH3氧化性能.实验表明,在NaC lO4中性电解液中,Ir/C催化剂对NH3氧化的电催化性能与Ir载量有关.其中以Ir载量为10%(by m ass)的Ir/C催化剂的电催化性能最好,稳定性和灵敏度也最高.此外,NH3在不同载量的Ir/C催化剂上电催化氧化的电流密度与NH3浓度均呈现出良好的线性关系,此类Ir/C催化剂在电流型电化学氨气传感器中可望有良好的应用前景.
基金National Natural Science Foundation of China(50664008)Key Natural Science Foundation of Yunnan Province(05E024M)Novel Foundation of Kunming Institute of Precious Metals(2002BY-01).