Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The ...Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The two novel skeleton compounds(1 and 6)were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes,respectively.Their structures were elucidated through a comprehensive analysis of spectroscopic data,including high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.The absolute configurations were determined using electronic circular dichroism(ECD)spectra,single-crystal X-ray crystallographic analyses,time-dependent density functional theory(TDDFT)ECD calculation,density functional theory(DFT)NMR calculations,and biomimetic syntheses.The biomimetic syntheses of the two novel skeletons(1 and 6)were inspired by potential biogenetic pathways,utilizing a predominant eudesmane-type sesquiterpene(A)in A.hedinii as the substrate.All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity.Compounds 2,8,and 10 exhibited significant activity in downregulating the expression ofα-smooth muscle actin(α-SMA),a protein involved in hepatic fibrosis.展开更多
基金supported from the National Natural Science Foundation of China(No.21920102003)the Key-Area Research and Development Program of Guangdong Province(No.2020B0303070002)the National Key R&D Program“Strategic Scientific and Technological Innovation Cooperation”Key Project(No.2022YFE0203600).
文摘Two novel skeleton sesquiterpenoids(1 and 6),along with four new iphionane-type sesquiterpenes(2−5)and six new cyperane-type sesquiterpenes(7−11),were isolated from the whole plant of Artemisia hedinii(A.hedinii).The two novel skeleton compounds(1 and 6)were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes,respectively.Their structures were elucidated through a comprehensive analysis of spectroscopic data,including high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.The absolute configurations were determined using electronic circular dichroism(ECD)spectra,single-crystal X-ray crystallographic analyses,time-dependent density functional theory(TDDFT)ECD calculation,density functional theory(DFT)NMR calculations,and biomimetic syntheses.The biomimetic syntheses of the two novel skeletons(1 and 6)were inspired by potential biogenetic pathways,utilizing a predominant eudesmane-type sesquiterpene(A)in A.hedinii as the substrate.All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity.Compounds 2,8,and 10 exhibited significant activity in downregulating the expression ofα-smooth muscle actin(α-SMA),a protein involved in hepatic fibrosis.