Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes h...Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes.展开更多
The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these probl...The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these problems,herein,a limitedly Zn-doped MgF_(2)interphase comprising an upper region of pure,porous MgF_(2)and a lower region of gradient Zn-doped MgF_(2)is achieved via radio frequency sputtering technique.The porous MgF_(2)region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution,resulting in Zn metal electrodes with a low interfacial resistance.The Zn-doped MgF_(2)region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF_(2)matrix,and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei.Consequently,a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of~27.2 and~99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2,respectively.The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5%and 84.0%with average Coulombic efficiencies of 99.96%after 1000 and 3000 cycles,respectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21905033)the Science and Technology Department of Sichuan Province(Grant No.2019YJ0503)State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(2020P4FZG02A).
文摘Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes.
基金supported by research grants from the National Research Foundation(NRF-2019H1D3A1A01069779)funded by the Ministry of Science and ICT,Republic of Korea,and by the Institutional Program(2E31863)and Bridge Program-KIST(2V09284).
文摘The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these problems,herein,a limitedly Zn-doped MgF_(2)interphase comprising an upper region of pure,porous MgF_(2)and a lower region of gradient Zn-doped MgF_(2)is achieved via radio frequency sputtering technique.The porous MgF_(2)region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution,resulting in Zn metal electrodes with a low interfacial resistance.The Zn-doped MgF_(2)region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF_(2)matrix,and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei.Consequently,a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of~27.2 and~99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2,respectively.The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5%and 84.0%with average Coulombic efficiencies of 99.96%after 1000 and 3000 cycles,respectively.