Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a n...Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a non-destructive and non-interruptive method to measure NO 3 gradients and electric potential differences across both the plasma membrane and tonoplast. Thus, a double-barrelled microelectrode backfilled with a membrane sensor for NO 3 embedded in poly vinyl chloride (PVC) can record the NO 3 activity in cytoplasm and vacuole of a cell. This paper presented how to make this kind of microelectrode and how to do the intracellular measurements on intact plants. Our result showed that nitrate activity was about 2.7 mmol L 1 in cytoplasm while 70 mmol L 1 in vacuole, which implicated that vacuole was a pool of nitrate in plants.展开更多
For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He...For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.展开更多
A new PVC matrix membrane double-barreled calcium ion-selective microelectrode based on liquid ion exchanger has been designed and constructed.The tip diameter of about 2.5μm as well as lower selectivity coefficients...A new PVC matrix membrane double-barreled calcium ion-selective microelectrode based on liquid ion exchanger has been designed and constructed.The tip diameter of about 2.5μm as well as lower selectivity coefficients for K+,Na and Mg2+are adequate for in-tracellular measurements of Ca activities.The inner wall of the selective channel was made to be hydrophobic by treatment withalkyl-alcohols.By means of this microelectrode some physiologicalphenomena related to Ca2+activities have been studied,and Caconcentrations in clinical microsamples have also been determined.展开更多
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most prominent cause of dementia.In 2019,over 57.4million people were living with AD and other dementia subtypes,a number which is ex...Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most prominent cause of dementia.In 2019,over 57.4million people were living with AD and other dementia subtypes,a number which is expected to increase to over 152.8 million in the next 25years.This ever-increasing burden has resulted in AD and other neurodegenerative diseases rising to one of the top 10 causes of death globally (O'Connell et al.,2024).展开更多
The reduction of nitrite at Au or carbon electrode in-H_2SO_4 was found to follow achemical-electrochemical (CE) mechanism with a very thin (4×10(-8)cm) preceding reaction zone.It was proposed and experimentally ...The reduction of nitrite at Au or carbon electrode in-H_2SO_4 was found to follow achemical-electrochemical (CE) mechanism with a very thin (4×10(-8)cm) preceding reaction zone.It was proposed and experimentally verified that for such kind of electrode processes the totalreaction the could be effectively enhanced by using electrodes with increased true surface area.such as porous electrodes. As a combination of porous electrode and microelectrode, the powdermicroclectrode shows excellent performance for nitrite detection.展开更多
A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstr...A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.展开更多
A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cel...A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.展开更多
CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted comple...CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.展开更多
Developing excellent pseudocapacitive electrodes with long cycle,high areal capacity and large rate has been challenged.3 D printing is an additive manufacture technique that has been explored to construct microelectr...Developing excellent pseudocapacitive electrodes with long cycle,high areal capacity and large rate has been challenged.3 D printing is an additive manufacture technique that has been explored to construct microelectrodes of arbitrary geometries for high-energy–density supercapacitors.In comparison with conventional electrodes with uncontrollable geometries and architectures,3 D-printed electrodes possess unique advantage in geometrical shape,mechanical properties,surface area,especially in ion transport and charge transfer.Thus,a desirable 3 D electrode with ordered porous structures can be elaborately designed by 3 D printing technology for improving electrochemical capacitance and rate capability.In this work,a designed,monolithic and ordered multi-porous 3 D Cu conductive skeleton was manufactured through 3 D direct ink writing technique and coated with Cu O nanosheet arrays by an in situ electro-oxidation treatment.Benefiting from the highly ordered multiporous nature,the 3 D-structured skeleton can eff ectively enlarge the surface area,enhance the penetration of electrolyte and facilitate fast electron and ion transport.As a result,the 3 D-printed Cu deposited with electro-oxidation-generated CuO(3 DP Cu@Cu O)electrodes demonstrates an ultrahigh areal capacitance of 1.690 F cm^(-2)(38.79 F cm^(-3))at a large current density of 30 m A cm^(-2)(688.59 m A cm^(-3)),excellent lifespan of 88.20%capacitance retention after 10,000 cycles at 30 m A cm^(-2) and superior rate capability(94.31%retention,2-30 m A cm^(-2)).This design concept of 3 D printing multi-porous current collector with hierarchical active materials provides a novel way to build high-performance 3 D microelectrodes.展开更多
With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are ...With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.展开更多
The initial stage of silver deposition has been investigated using the microelectrode technique A disc shaped nucleus can be obtained on glassy carbon microelectrodes and the instanta. neous nucleation model applies f...The initial stage of silver deposition has been investigated using the microelectrode technique A disc shaped nucleus can be obtained on glassy carbon microelectrodes and the instanta. neous nucleation model applies for the process展开更多
Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operat...Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operations, being realized on macroscopic electrode, are not suitable for implantable logic devices. Here, we demonstrate DNA-based logic gates with electrochemical signal as output combined with gold flower microelectrodes. The designed logic gates are of fast response, enzyme-free, and micrometer scale. They perform well in either pure solution or complex matrices, such as fetal bovine serum,suggesting great potential for in vivo applications.展开更多
Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished an...Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.展开更多
Copper microelectrodes were used in microvoltammetry to detect histamine and several amino acid neurotransmitters. High sensitivity was obtained through the use of copper microelectrodes, and detection limits of 50 n...Copper microelectrodes were used in microvoltammetry to detect histamine and several amino acid neurotransmitters. High sensitivity was obtained through the use of copper microelectrodes, and detection limits of 50 nmol/L and 90 nmol/L were obtained for histamine and histidine, respectively. Furthermore, histamine and several amino acids neurotransmitters were firstly separated and detected by capillary electrophoresis with amperometric detection on copper microelectrodes. Mass limits of 490 amol and 440 amol were achieved for histamine and histidine, respectively, by using this mothod.展开更多
A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such...A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such as membrane composition, internal solution, concentration of SO_4^(2–), and acidity in test solution. The best performance was obtained using the membrane with PVC:DBP:HDEHP:HEH/EHP:OA mass ratio of 75:175:5:5:5. The proposed electrode exhibited a Nernstian slope of 30.44 mV/decade for Ce(Ⅳ) ion over a linear concentration range of 1×10^(–5)–1×10^(–1) mol/L with the detection limit of 9.0×10^(-6) mol/L. The electrode showed stable response within the SO_4^(2–) concentration range of 0.1–1 mol/L and the acidity range of 0.25–1.2 mol/L H+. The proposed electrode showed high selectivity for Ce(Ⅳ) over a wide variety of interfering ions and a fast response time. It was used as an indicator in the potentiometric titration of Ce(Ⅳ) solution with H_2O_2 solution, and could also be used for the determination of Ce(Ⅳ) in real Ce(Ⅳ)-containing aqueous samples.展开更多
Poly(neutral red) film modified carbon fibre microelectrodes offer substantial improvement in voltammetric sensitivity and selectivity towards epinephrine (EP). The poly(neutral red) film was electropolymerized by cyc...Poly(neutral red) film modified carbon fibre microelectrodes offer substantial improvement in voltammetric sensitivity and selectivity towards epinephrine (EP). The poly(neutral red) film was electropolymerized by cycling the potential between -0.8 V and +0.8 V. The anodic stripping voltammetric response for EP was found to be dependent on accumulation time and potential. By using a poly(neutral red) film modified carbon fibre microelectrode with a 1 min preconcentration at -1.2 V in biological phosphate buffer solution (pH=7.4), a good linear relationship between the anodic stripping peak currents and EP concentrations was obtained in the range of 2.0×10 -7  ̄ 2.0×10 -5 mol/L. The detection limit was up to 9.0 ×10 -8 mol/L. Moreover, 400 times higher concentrations of vitamin C did not interfere with the measurement of EP. This method was used for determining EP concentrations in epinephrine hydrochloride injection solution with satisfactory results.展开更多
The regeneration of the injured nerve and recovery of its function have brought attention in the medical field. Electrical stimulation(ES) can enhance the cellular biological behavior and has been widely studied in th...The regeneration of the injured nerve and recovery of its function have brought attention in the medical field. Electrical stimulation(ES) can enhance the cellular biological behavior and has been widely studied in the treatment of neurological diseases. Microfluidic technology can provide a cell culture platform with the well-controlled environment. Here a novel microfluidic/microelectrode composite microdevice was developed by embedding the microelectrodes to the microfluidic platform, in which microfluidics provided a controlled cell culture platform, and ES promoted the NSCs proliferation. We performed ES on rat neural stem cells(NSCs) to observe the effect on their growth, differentiation, proliferation, and preliminary explored the ES influence on cells in vitro. The results of immunofluorescence showed that ES had no significant effect on the NSCs specific expression, and the NSCs specific expression reached 98.9%± 0.4% after three days of ES. In addition, ES significantly promoted cell growth and the cell proliferation rate reached 49.41%. To conclude, the microfluidic/microelectrode composite microdevice can play a positive role in the nerve injury repair and fundamental research of neurological diseases.展开更多
A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet o...A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet of urea-formaldehyde resin containing Cl - ions to form a needle-shaped inner reference electrode, then the inner reference electrode was coated with a thin sheet of a PVC membrane containing an enoxacin tetraphenylborate ion-pair complex. The influences of various ion-pair complexes, concentrations of the active components in the membrane and the plasticizers on the performance of the electrode were studied by orthogonal design. The linear response range of the electrode was 7.9×10 -5 -1.0×10 -2 mol/L. The detection limit was 2.0×10 -5 mol/L. The slope was 30.4 mV/decade(25 ℃). The electrode can be used for the potentiometric determination of enoxacin tablets directly. The average recovery was 100.4%, and the RSD was 0.9%. The results agreed with those determined by the method in Chinese Pharmacopoeia.展开更多
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e...A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes.展开更多
Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,alterin...Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.展开更多
基金supported by the National Natural Science Foundation of China(30270790).
文摘Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a non-destructive and non-interruptive method to measure NO 3 gradients and electric potential differences across both the plasma membrane and tonoplast. Thus, a double-barrelled microelectrode backfilled with a membrane sensor for NO 3 embedded in poly vinyl chloride (PVC) can record the NO 3 activity in cytoplasm and vacuole of a cell. This paper presented how to make this kind of microelectrode and how to do the intracellular measurements on intact plants. Our result showed that nitrate activity was about 2.7 mmol L 1 in cytoplasm while 70 mmol L 1 in vacuole, which implicated that vacuole was a pool of nitrate in plants.
基金the financial support of the National Key R&D Program of China(Grant Nos.2021YFB3200701 and 2018YFA0208501)the National Natural Science Foundation of China(Grant Nos.21875260,21671193,91963212,51773206,21731001,and 52272098)Beijing Natural Science Foundation(No.2202069)
文摘For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.
基金Projects supported by the science Fund of the Chinese Academy of Sciences.
文摘A new PVC matrix membrane double-barreled calcium ion-selective microelectrode based on liquid ion exchanger has been designed and constructed.The tip diameter of about 2.5μm as well as lower selectivity coefficients for K+,Na and Mg2+are adequate for in-tracellular measurements of Ca activities.The inner wall of the selective channel was made to be hydrophobic by treatment withalkyl-alcohols.By means of this microelectrode some physiologicalphenomena related to Ca2+activities have been studied,and Caconcentrations in clinical microsamples have also been determined.
文摘Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most prominent cause of dementia.In 2019,over 57.4million people were living with AD and other dementia subtypes,a number which is expected to increase to over 152.8 million in the next 25years.This ever-increasing burden has resulted in AD and other neurodegenerative diseases rising to one of the top 10 causes of death globally (O'Connell et al.,2024).
文摘The reduction of nitrite at Au or carbon electrode in-H_2SO_4 was found to follow achemical-electrochemical (CE) mechanism with a very thin (4×10(-8)cm) preceding reaction zone.It was proposed and experimentally verified that for such kind of electrode processes the totalreaction the could be effectively enhanced by using electrodes with increased true surface area.such as porous electrodes. As a combination of porous electrode and microelectrode, the powdermicroclectrode shows excellent performance for nitrite detection.
文摘A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.
文摘A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.
基金The work was financially supported by the Project KJCXGC-O1 of Northwest Normal University, Lanzhou and theExcellent Young Te
文摘CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.
基金financially supported by the National Natural Science Foundation of China(Nos.51771236,51901249 and U1904216)the Science Fund for Distinguished Young Scholars of Hunan Province(No.2018JJ1038)。
文摘Developing excellent pseudocapacitive electrodes with long cycle,high areal capacity and large rate has been challenged.3 D printing is an additive manufacture technique that has been explored to construct microelectrodes of arbitrary geometries for high-energy–density supercapacitors.In comparison with conventional electrodes with uncontrollable geometries and architectures,3 D-printed electrodes possess unique advantage in geometrical shape,mechanical properties,surface area,especially in ion transport and charge transfer.Thus,a desirable 3 D electrode with ordered porous structures can be elaborately designed by 3 D printing technology for improving electrochemical capacitance and rate capability.In this work,a designed,monolithic and ordered multi-porous 3 D Cu conductive skeleton was manufactured through 3 D direct ink writing technique and coated with Cu O nanosheet arrays by an in situ electro-oxidation treatment.Benefiting from the highly ordered multiporous nature,the 3 D-structured skeleton can eff ectively enlarge the surface area,enhance the penetration of electrolyte and facilitate fast electron and ion transport.As a result,the 3 D-printed Cu deposited with electro-oxidation-generated CuO(3 DP Cu@Cu O)electrodes demonstrates an ultrahigh areal capacitance of 1.690 F cm^(-2)(38.79 F cm^(-3))at a large current density of 30 m A cm^(-2)(688.59 m A cm^(-3)),excellent lifespan of 88.20%capacitance retention after 10,000 cycles at 30 m A cm^(-2) and superior rate capability(94.31%retention,2-30 m A cm^(-2)).This design concept of 3 D printing multi-porous current collector with hierarchical active materials provides a novel way to build high-performance 3 D microelectrodes.
文摘With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.
文摘The initial stage of silver deposition has been investigated using the microelectrode technique A disc shaped nucleus can be obtained on glassy carbon microelectrodes and the instanta. neous nucleation model applies for the process
基金supported by the National Natural Science Foundation of China(Nos.31470960 and 21422508)
文摘Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operations, being realized on macroscopic electrode, are not suitable for implantable logic devices. Here, we demonstrate DNA-based logic gates with electrochemical signal as output combined with gold flower microelectrodes. The designed logic gates are of fast response, enzyme-free, and micrometer scale. They perform well in either pure solution or complex matrices, such as fetal bovine serum,suggesting great potential for in vivo applications.
文摘Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.
文摘Copper microelectrodes were used in microvoltammetry to detect histamine and several amino acid neurotransmitters. High sensitivity was obtained through the use of copper microelectrodes, and detection limits of 50 nmol/L and 90 nmol/L were obtained for histamine and histidine, respectively. Furthermore, histamine and several amino acids neurotransmitters were firstly separated and detected by capillary electrophoresis with amperometric detection on copper microelectrodes. Mass limits of 490 amol and 440 amol were achieved for histamine and histidine, respectively, by using this mothod.
基金supported by the Key Program of National Natural Science Foundation of China(50934004)National Natural Science Foundation of China(51274061)+1 种基金Major State Basic Research Development Program of China(2012CBA01205)Fundamental Research Supporting Project of Northeastern University(N110602006)
文摘A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such as membrane composition, internal solution, concentration of SO_4^(2–), and acidity in test solution. The best performance was obtained using the membrane with PVC:DBP:HDEHP:HEH/EHP:OA mass ratio of 75:175:5:5:5. The proposed electrode exhibited a Nernstian slope of 30.44 mV/decade for Ce(Ⅳ) ion over a linear concentration range of 1×10^(–5)–1×10^(–1) mol/L with the detection limit of 9.0×10^(-6) mol/L. The electrode showed stable response within the SO_4^(2–) concentration range of 0.1–1 mol/L and the acidity range of 0.25–1.2 mol/L H+. The proposed electrode showed high selectivity for Ce(Ⅳ) over a wide variety of interfering ions and a fast response time. It was used as an indicator in the potentiometric titration of Ce(Ⅳ) solution with H_2O_2 solution, and could also be used for the determination of Ce(Ⅳ) in real Ce(Ⅳ)-containing aqueous samples.
文摘Poly(neutral red) film modified carbon fibre microelectrodes offer substantial improvement in voltammetric sensitivity and selectivity towards epinephrine (EP). The poly(neutral red) film was electropolymerized by cycling the potential between -0.8 V and +0.8 V. The anodic stripping voltammetric response for EP was found to be dependent on accumulation time and potential. By using a poly(neutral red) film modified carbon fibre microelectrode with a 1 min preconcentration at -1.2 V in biological phosphate buffer solution (pH=7.4), a good linear relationship between the anodic stripping peak currents and EP concentrations was obtained in the range of 2.0×10 -7  ̄ 2.0×10 -5 mol/L. The detection limit was up to 9.0 ×10 -8 mol/L. Moreover, 400 times higher concentrations of vitamin C did not interfere with the measurement of EP. This method was used for determining EP concentrations in epinephrine hydrochloride injection solution with satisfactory results.
基金financially supported by the Key Scientific and Technological Projects of the Beijing Education Commission (No.KZ201910005009)。
文摘The regeneration of the injured nerve and recovery of its function have brought attention in the medical field. Electrical stimulation(ES) can enhance the cellular biological behavior and has been widely studied in the treatment of neurological diseases. Microfluidic technology can provide a cell culture platform with the well-controlled environment. Here a novel microfluidic/microelectrode composite microdevice was developed by embedding the microelectrodes to the microfluidic platform, in which microfluidics provided a controlled cell culture platform, and ES promoted the NSCs proliferation. We performed ES on rat neural stem cells(NSCs) to observe the effect on their growth, differentiation, proliferation, and preliminary explored the ES influence on cells in vitro. The results of immunofluorescence showed that ES had no significant effect on the NSCs specific expression, and the NSCs specific expression reached 98.9%± 0.4% after three days of ES. In addition, ES significantly promoted cell growth and the cell proliferation rate reached 49.41%. To conclude, the microfluidic/microelectrode composite microdevice can play a positive role in the nerve injury repair and fundamental research of neurological diseases.
文摘A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet of urea-formaldehyde resin containing Cl - ions to form a needle-shaped inner reference electrode, then the inner reference electrode was coated with a thin sheet of a PVC membrane containing an enoxacin tetraphenylborate ion-pair complex. The influences of various ion-pair complexes, concentrations of the active components in the membrane and the plasticizers on the performance of the electrode were studied by orthogonal design. The linear response range of the electrode was 7.9×10 -5 -1.0×10 -2 mol/L. The detection limit was 2.0×10 -5 mol/L. The slope was 30.4 mV/decade(25 ℃). The electrode can be used for the potentiometric determination of enoxacin tablets directly. The average recovery was 100.4%, and the RSD was 0.9%. The results agreed with those determined by the method in Chinese Pharmacopoeia.
基金Supported by the National Natural Science Foundation of China under Grant No 11335003
文摘A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes.
文摘Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.