Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is g...Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is generally slow at low temperature,resulting in large overpotential and low current efficiency.Thus,the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions.This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields.The regulating effects on the optimization of the electrodeposition process and the strategies for select-ing various external physical fields,including magnetic,supergravity,and ultrasonic fields are summarized from the perspectives of equipment and mechanisms.Finally,advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition.An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures.展开更多
CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted comple...CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.展开更多
A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cel...A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.展开更多
A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such...A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such as membrane composition, internal solution, concentration of SO_4^(2–), and acidity in test solution. The best performance was obtained using the membrane with PVC:DBP:HDEHP:HEH/EHP:OA mass ratio of 75:175:5:5:5. The proposed electrode exhibited a Nernstian slope of 30.44 mV/decade for Ce(Ⅳ) ion over a linear concentration range of 1×10^(–5)–1×10^(–1) mol/L with the detection limit of 9.0×10^(-6) mol/L. The electrode showed stable response within the SO_4^(2–) concentration range of 0.1–1 mol/L and the acidity range of 0.25–1.2 mol/L H+. The proposed electrode showed high selectivity for Ce(Ⅳ) over a wide variety of interfering ions and a fast response time. It was used as an indicator in the potentiometric titration of Ce(Ⅳ) solution with H_2O_2 solution, and could also be used for the determination of Ce(Ⅳ) in real Ce(Ⅳ)-containing aqueous samples.展开更多
A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet o...A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet of urea-formaldehyde resin containing Cl - ions to form a needle-shaped inner reference electrode, then the inner reference electrode was coated with a thin sheet of a PVC membrane containing an enoxacin tetraphenylborate ion-pair complex. The influences of various ion-pair complexes, concentrations of the active components in the membrane and the plasticizers on the performance of the electrode were studied by orthogonal design. The linear response range of the electrode was 7.9×10 -5 -1.0×10 -2 mol/L. The detection limit was 2.0×10 -5 mol/L. The slope was 30.4 mV/decade(25 ℃). The electrode can be used for the potentiometric determination of enoxacin tablets directly. The average recovery was 100.4%, and the RSD was 0.9%. The results agreed with those determined by the method in Chinese Pharmacopoeia.展开更多
Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,alterin...Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.展开更多
A calcium ion-setective eletrode based on a new neutral carrier was studied.The electrode gives a Nernstian response in the rang 5.9-1 Pa and the response is stable in a wide pH range.Logarithms of setectivity coeffic...A calcium ion-setective eletrode based on a new neutral carrier was studied.The electrode gives a Nernstian response in the rang 5.9-1 Pa and the response is stable in a wide pH range.Logarithms of setectivity coefficents are -2.3 Li(+),-3.5 Na(+),-4.0 K(+),-3.7NH_4(+),-4.5 Mg(2+) and -4.4Zn(2+).展开更多
Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the ad...Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.展开更多
Supercapacitors(SCs)have remarkable energy storage capabilities and have garnered considerable interest due to their superior power densities and ultra-long cycling characteristics.However,their comparatively low ener...Supercapacitors(SCs)have remarkable energy storage capabilities and have garnered considerable interest due to their superior power densities and ultra-long cycling characteristics.However,their comparatively low energy density limits their extensive application in large-scale commercial applications.Electrode materials directly affect the performance of SCs.Thus,the development of cutting-edge electrode materials and modification of their morphological and structural properties are vital for advancing the performance of SCs.Transition metal compounds have a high specific capacity and good cycling durability,making them the most promising electrode active materials for high-energy density SCs.Nevertheless,their inadequate conductivity,unfavorable ion diffusion rates,substantial volume expansion and phase transitions during charging and discharging are obstacles to their stable and efficient integration into SCs.To address these challenges,this study provides a comprehensive summary of the current advancements in transition metal nanomaterials as electrode materials for SCs,an overview of the current research status,and the prevailing challenges.Furthermore,this study highlights synthetic techniques and management strategies for electrode materials derived from transition metal compounds,targeting the resolution of the aforementioned challenges.Finally,a concise discussion is provided on the future directions of SC development,with an emphasis on the utilization of transition metal compound electrode materials.展开更多
With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is intr...With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
In this work,porous hollow spherical NiCo_(2)S_(4) nanomaterials composed of loosely porous nanowires on the surface were prepared using nickel foam as the substrate through a secondary hydrother-mal reaction method.T...In this work,porous hollow spherical NiCo_(2)S_(4) nanomaterials composed of loosely porous nanowires on the surface were prepared using nickel foam as the substrate through a secondary hydrother-mal reaction method.The synthesized materials were then characterized using techniques such as X-ray powder diffraction,scanning electron microscopy and energy-dispersive X-ray spectroscopy.Finally,elec-trochemical performance tests were conducted on the synthesized cobalt-nickel bimetallic compound elec-trode materials,the specific capacitance of the synthesized NiCo_(2)S_(4) nanomaterial reached 3.20 F·cm-2,Moreover,the specific capacitance remained 95.8%of its initial value after 500 cycles.The electrochemical performance was superior to that of the prepared NiCo2O4 nanomaterial.The results suggest that the prepared NiCo_(2)S_(4) with special structure could be a great potential as a material for supercapacitor electrodes.展开更多
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction...This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of selfadaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.展开更多
Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabricat...Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.展开更多
A detective method of a negative corona discharge by means of an external electrode is presented. The relationship between an area of the external electrode and a detected voltage waveform is examined experimentally. ...A detective method of a negative corona discharge by means of an external electrode is presented. The relationship between an area of the external electrode and a detected voltage waveform is examined experimentally. This experimental study is carried out with the use of a rod-plane air gap. The results obtained will be applicable to problems associated with silos, ducts, and high-voltage equipment.展开更多
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme...During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.展开更多
Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteri...Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteristics of the metal plasma which consists of metal ions coming from cathode and generated by vacuum discharge. In this research, the generation characteristics of the metal plasma generated by vacuum discharge are discussed for four patterns of electrode configurations, i.e. cone-mesh electrode setup, cone-cross line electrode setup, cone-line electrode setup and cone-ring electrode setup. Characteristics of the metal plasma, such as elec- tron density, electron temperature, space potential, ion energy, are measured by the probe method for discussing the impacts of different electrode configurations on the density of generated metal plasma. Moreover, the diffusion velocities of the metal plasma are measured for cathode materials of Pb, Al, and Cu, respectively. The experimental results indicate that the plasma generated by the discharge of cone-ring electrode configuration possesses the maximum density and the metal plasma generated by the Al cathode possesses the fastest diffusion velocity and the highest kinetic energy.展开更多
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break...The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.展开更多
基金supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP243)the National Key Research and Development Program of China(No.2022YFC2906100)the National Natural Science Foundation of China(No.92475202)are acknowledged.
文摘Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is generally slow at low temperature,resulting in large overpotential and low current efficiency.Thus,the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions.This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields.The regulating effects on the optimization of the electrodeposition process and the strategies for select-ing various external physical fields,including magnetic,supergravity,and ultrasonic fields are summarized from the perspectives of equipment and mechanisms.Finally,advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition.An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures.
基金The work was financially supported by the Project KJCXGC-O1 of Northwest Normal University, Lanzhou and theExcellent Young Te
文摘CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.
文摘A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.
基金supported by the Key Program of National Natural Science Foundation of China(50934004)National Natural Science Foundation of China(51274061)+1 种基金Major State Basic Research Development Program of China(2012CBA01205)Fundamental Research Supporting Project of Northeastern University(N110602006)
文摘A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such as membrane composition, internal solution, concentration of SO_4^(2–), and acidity in test solution. The best performance was obtained using the membrane with PVC:DBP:HDEHP:HEH/EHP:OA mass ratio of 75:175:5:5:5. The proposed electrode exhibited a Nernstian slope of 30.44 mV/decade for Ce(Ⅳ) ion over a linear concentration range of 1×10^(–5)–1×10^(–1) mol/L with the detection limit of 9.0×10^(-6) mol/L. The electrode showed stable response within the SO_4^(2–) concentration range of 0.1–1 mol/L and the acidity range of 0.25–1.2 mol/L H+. The proposed electrode showed high selectivity for Ce(Ⅳ) over a wide variety of interfering ions and a fast response time. It was used as an indicator in the potentiometric titration of Ce(Ⅳ) solution with H_2O_2 solution, and could also be used for the determination of Ce(Ⅳ) in real Ce(Ⅳ)-containing aqueous samples.
文摘A PVC membrane enoxacin ion-selective electrode based on a needle-shaped inner reference electrode was prepared. A Ag/AgCl wire was used as the substrate of this electrode. It was previously coated with a thin sheet of urea-formaldehyde resin containing Cl - ions to form a needle-shaped inner reference electrode, then the inner reference electrode was coated with a thin sheet of a PVC membrane containing an enoxacin tetraphenylborate ion-pair complex. The influences of various ion-pair complexes, concentrations of the active components in the membrane and the plasticizers on the performance of the electrode were studied by orthogonal design. The linear response range of the electrode was 7.9×10 -5 -1.0×10 -2 mol/L. The detection limit was 2.0×10 -5 mol/L. The slope was 30.4 mV/decade(25 ℃). The electrode can be used for the potentiometric determination of enoxacin tablets directly. The average recovery was 100.4%, and the RSD was 0.9%. The results agreed with those determined by the method in Chinese Pharmacopoeia.
文摘Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.
文摘A calcium ion-setective eletrode based on a new neutral carrier was studied.The electrode gives a Nernstian response in the rang 5.9-1 Pa and the response is stable in a wide pH range.Logarithms of setectivity coefficents are -2.3 Li(+),-3.5 Na(+),-4.0 K(+),-3.7NH_4(+),-4.5 Mg(2+) and -4.4Zn(2+).
文摘Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.
基金supported by the National Natural Science Foundation of China(No.22301151)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2022QN05024)+3 种基金the Fundamental Scientific Research Funds for Universities directly under Inner Mongolia Autonomous Region of China(Nos.JY20230097 and JY20220116)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(No.NMGIRT2211)Inner Mongolia University of Technology Key Discipline Team Project of Materials Science(No.ZD202012)the Young Leading Talent of“Grassland Talents”Project of Inner Mongolia Autonomous Region(No.QNLJ012010)。
文摘Supercapacitors(SCs)have remarkable energy storage capabilities and have garnered considerable interest due to their superior power densities and ultra-long cycling characteristics.However,their comparatively low energy density limits their extensive application in large-scale commercial applications.Electrode materials directly affect the performance of SCs.Thus,the development of cutting-edge electrode materials and modification of their morphological and structural properties are vital for advancing the performance of SCs.Transition metal compounds have a high specific capacity and good cycling durability,making them the most promising electrode active materials for high-energy density SCs.Nevertheless,their inadequate conductivity,unfavorable ion diffusion rates,substantial volume expansion and phase transitions during charging and discharging are obstacles to their stable and efficient integration into SCs.To address these challenges,this study provides a comprehensive summary of the current advancements in transition metal nanomaterials as electrode materials for SCs,an overview of the current research status,and the prevailing challenges.Furthermore,this study highlights synthetic techniques and management strategies for electrode materials derived from transition metal compounds,targeting the resolution of the aforementioned challenges.Finally,a concise discussion is provided on the future directions of SC development,with an emphasis on the utilization of transition metal compound electrode materials.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000103)the National Natural Science Foundation of China(Grant No.41504081)。
文摘With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金supported by Department of Education of Jilin Province and Technology Research Projects(JJKH20220183KJ)Jilin Engineering Normal University PhD Startup Foundation(BSKJ201841)Jilin Engineering Normal University Undergraduate Innovation Training Program Project(202410204027,202410204057).
文摘In this work,porous hollow spherical NiCo_(2)S_(4) nanomaterials composed of loosely porous nanowires on the surface were prepared using nickel foam as the substrate through a secondary hydrother-mal reaction method.The synthesized materials were then characterized using techniques such as X-ray powder diffraction,scanning electron microscopy and energy-dispersive X-ray spectroscopy.Finally,elec-trochemical performance tests were conducted on the synthesized cobalt-nickel bimetallic compound elec-trode materials,the specific capacitance of the synthesized NiCo_(2)S_(4) nanomaterial reached 3.20 F·cm-2,Moreover,the specific capacitance remained 95.8%of its initial value after 500 cycles.The electrochemical performance was superior to that of the prepared NiCo2O4 nanomaterial.The results suggest that the prepared NiCo_(2)S_(4) with special structure could be a great potential as a material for supercapacitor electrodes.
基金FAPESP (Fundacào de Amparo à Pesquisa do Estado de Sào Paulo)(Grant No.98/07789-7)
文摘This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of selfadaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
文摘Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.
文摘A detective method of a negative corona discharge by means of an external electrode is presented. The relationship between an area of the external electrode and a detected voltage waveform is examined experimentally. This experimental study is carried out with the use of a rod-plane air gap. The results obtained will be applicable to problems associated with silos, ducts, and high-voltage equipment.
基金Supported by the National Natural Science Foundation of China under Grant No 51577011
文摘During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
文摘Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteristics of the metal plasma which consists of metal ions coming from cathode and generated by vacuum discharge. In this research, the generation characteristics of the metal plasma generated by vacuum discharge are discussed for four patterns of electrode configurations, i.e. cone-mesh electrode setup, cone-cross line electrode setup, cone-line electrode setup and cone-ring electrode setup. Characteristics of the metal plasma, such as elec- tron density, electron temperature, space potential, ion energy, are measured by the probe method for discussing the impacts of different electrode configurations on the density of generated metal plasma. Moreover, the diffusion velocities of the metal plasma are measured for cathode materials of Pb, Al, and Cu, respectively. The experimental results indicate that the plasma generated by the discharge of cone-ring electrode configuration possesses the maximum density and the metal plasma generated by the Al cathode possesses the fastest diffusion velocity and the highest kinetic energy.
基金supported by the Programs of National 973 (2011CB935900)NSFC (51231003 and 21231005)+1 种基金111 Project (B12015)Tianjin High-Tech (10SYSYJC27600)
文摘The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.