Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane(THM) and haloacetic acid(HAA) disinfection byproducts(DBPs) in drinking wa...Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane(THM) and haloacetic acid(HAA) disinfection byproducts(DBPs) in drinking water and meet the current regulations. However, chloramination can also produce other highly toxic/carcinogenic, unregulated DBPs: iodoacids, iodo-THMs, and N-nitrosodimethylamine(NDMA). In practice, chloramines are generated by the addition of chlorine with ammonia, and plants use varying amounts of free chlorine contact time prior to ammonia addition to effectively kill pathogens and meet DBP regulations. However, iodo-DBPs and nitrosamines are generally not considered in this balancing of free chlorine contact time. The goal of our work was to determine whether an optimal free chlorine contact time could be established in which iodo-DBPs and NDMA could be minimized, while keeping regulated THMs and HAAs below their regulatory limits. The effect of free chlorine contact time was evaluated for the formation of six iodo-trihalomethanes(iodo-THMs), six iodo-acids, and NDMA during the chloramination of drinking water. Ten different free chlorine contact times were examined for two source waters with different dissolved organic carbon(DOC) and bromide/iodide. For the low DOC water at pH 7 and 8, an optimized free chlorine contact time of up to 1 h could control regulated THMs and HAAs, as well as iodo-DBPs and NDMA. For the high DOC water, a free chlorine contact time of 5 min could control iodo-DBPs and NDMA at both p Hs, but the regulated DBPs could exceed the regulations at pH 7.展开更多
The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this st...The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.展开更多
文摘Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane(THM) and haloacetic acid(HAA) disinfection byproducts(DBPs) in drinking water and meet the current regulations. However, chloramination can also produce other highly toxic/carcinogenic, unregulated DBPs: iodoacids, iodo-THMs, and N-nitrosodimethylamine(NDMA). In practice, chloramines are generated by the addition of chlorine with ammonia, and plants use varying amounts of free chlorine contact time prior to ammonia addition to effectively kill pathogens and meet DBP regulations. However, iodo-DBPs and nitrosamines are generally not considered in this balancing of free chlorine contact time. The goal of our work was to determine whether an optimal free chlorine contact time could be established in which iodo-DBPs and NDMA could be minimized, while keeping regulated THMs and HAAs below their regulatory limits. The effect of free chlorine contact time was evaluated for the formation of six iodo-trihalomethanes(iodo-THMs), six iodo-acids, and NDMA during the chloramination of drinking water. Ten different free chlorine contact times were examined for two source waters with different dissolved organic carbon(DOC) and bromide/iodide. For the low DOC water at pH 7 and 8, an optimized free chlorine contact time of up to 1 h could control regulated THMs and HAAs, as well as iodo-DBPs and NDMA. For the high DOC water, a free chlorine contact time of 5 min could control iodo-DBPs and NDMA at both p Hs, but the regulated DBPs could exceed the regulations at pH 7.
基金supported by grant numbers NSF1124865 (SDR and SED)NSF1124844 (MJP)+1 种基金NIH T32 ES 007326 (CHJ)NIH T32 ES 007015 (CHJ)
文摘The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.