Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc...Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.展开更多
Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-ba...Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing conditions.Designed to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real time.The training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent performance.The simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods.展开更多
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the fi...This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain...Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.展开更多
One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify eve...One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.展开更多
The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci...The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.展开更多
In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost e...In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.展开更多
the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objec...the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.展开更多
We are privileged to be invited by the Honorary Editor-in-Chief,Professor Qihu Qian,Editor-in-Chief,Professor Xia-Ting Feng,and the editorial staff of the Journal of Rock Mechanics and Geotechnical Engineering(JRMGE),...We are privileged to be invited by the Honorary Editor-in-Chief,Professor Qihu Qian,Editor-in-Chief,Professor Xia-Ting Feng,and the editorial staff of the Journal of Rock Mechanics and Geotechnical Engineering(JRMGE),to serve as vip Editors for this Special Issue(SI).Over the last decade,the application of the Internet of Things(IoT)and Artificial Intelligence(AI)has increased rapidly to enhance automation in various industries.For efficient construction and maintenance of geotechnical infrastructures(slopes,tunnels,pipelines,and other ground infrastructures),there is a need to access and examine measured data in real-time.Variations in data type due to the usage of unmanned aerial vehicle(UAV)photogrammetric sensors,LiDAR,and fiber optic sensing techniques make data management and analysis more complicated.Advanced artificial intelligence,metaheuristic optimization,and data science can be reliable methods in geotechnical engineering for site investigation,risk assessment,design,construction,and maintenance at a higher level.展开更多
Internet of Things (IoT) is a widely distributed network which requires small amount of power supply having limited storage and processing capacity. On the other hand, Cloud computing has virtually unlimited storage a...Internet of Things (IoT) is a widely distributed network which requires small amount of power supply having limited storage and processing capacity. On the other hand, Cloud computing has virtually unlimited storage and processing capabilities and is a much more mature technology. Therefore, combination of Cloud computing and IoT can provide the best performance for users. Cloud computing nowadays provides lifesaving healthcare application by collecting data from bedside devices, viewing patient information and diagnose in real time. There may some concerns about security and other issues of the patient’s data but utilization of IoT and Cloud technologies in healthcare industry would open a new era in the field of healthcare. To ensure basic healthcare needs of the people in the rural areas, we have proposed Cloud-IoT based smart healthcare system. In this system various types of sensors (Temperature, Heart bit, ECG, etc.) are equipped in the patient side to sense the patient’s physiological data. For securing data RSA based authentication algorithm and mitigation of several security threats have been used. The sensed data will process and store in the Cloud server. Stored data can be used by the authorized and/or concerned medical practitioner upon approved by the user for patient caring.展开更多
基金funded by Researchers Supporting Project Number(RSPD2025R947)King Saud University,Riyadh,Saudi Arabia.
文摘Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.
基金funding of the Deanship of Graduate Studies and Scientific Research,Jazan University,Saudi Arabia,through Project Number:ISP-2024.
文摘Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing conditions.Designed to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real time.The training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent performance.The simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
基金This work is part of the‘Intelligent and Cyber-Secure Platform for Adaptive Optimization in the Simultaneous Operation of Heterogeneous Autonomous Robots(PICRAH4.0)’with reference MIG-20232082,funded by MCIN/AEI/10.13039/501100011033supported by the Universidad Internacional de La Rioja(UNIR)through the Precompetitive Research Project entitled“Nuevos Horizontes en Internet de las Cosas y NewSpace(NEWIOT)”,reference PP-2024-13,funded under the 2024 Call for Research Projects.
文摘This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金supported by Key Science and Technology Program of Henan Province,China(Grant Nos.242102210147,242102210027)Fujian Province Young and Middle aged Teacher Education Research Project(Science and Technology Category)(No.JZ240101)(Corresponding author:Dong Yuan).
文摘Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.
文摘One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.
基金supported by National Key Research and Development Program(2016YFE0102600)National Natural Science Foundation of China(51577096,51477082)
文摘The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.
文摘In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.
文摘the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.
文摘We are privileged to be invited by the Honorary Editor-in-Chief,Professor Qihu Qian,Editor-in-Chief,Professor Xia-Ting Feng,and the editorial staff of the Journal of Rock Mechanics and Geotechnical Engineering(JRMGE),to serve as vip Editors for this Special Issue(SI).Over the last decade,the application of the Internet of Things(IoT)and Artificial Intelligence(AI)has increased rapidly to enhance automation in various industries.For efficient construction and maintenance of geotechnical infrastructures(slopes,tunnels,pipelines,and other ground infrastructures),there is a need to access and examine measured data in real-time.Variations in data type due to the usage of unmanned aerial vehicle(UAV)photogrammetric sensors,LiDAR,and fiber optic sensing techniques make data management and analysis more complicated.Advanced artificial intelligence,metaheuristic optimization,and data science can be reliable methods in geotechnical engineering for site investigation,risk assessment,design,construction,and maintenance at a higher level.
文摘Internet of Things (IoT) is a widely distributed network which requires small amount of power supply having limited storage and processing capacity. On the other hand, Cloud computing has virtually unlimited storage and processing capabilities and is a much more mature technology. Therefore, combination of Cloud computing and IoT can provide the best performance for users. Cloud computing nowadays provides lifesaving healthcare application by collecting data from bedside devices, viewing patient information and diagnose in real time. There may some concerns about security and other issues of the patient’s data but utilization of IoT and Cloud technologies in healthcare industry would open a new era in the field of healthcare. To ensure basic healthcare needs of the people in the rural areas, we have proposed Cloud-IoT based smart healthcare system. In this system various types of sensors (Temperature, Heart bit, ECG, etc.) are equipped in the patient side to sense the patient’s physiological data. For securing data RSA based authentication algorithm and mitigation of several security threats have been used. The sensed data will process and store in the Cloud server. Stored data can be used by the authorized and/or concerned medical practitioner upon approved by the user for patient caring.