期刊文献+
共找到8,335篇文章
< 1 2 250 >
每页显示 20 50 100
基于IoT技术的寒地黑土质量信息监测系统
1
作者 葛宜元 孙道起 +4 位作者 孟庆祥 王囡囡 高士军 苏安双 王淼 《农机化研究》 北大核心 2026年第1期226-232,267,共8页
寒地黑土是我国东北地区的重要农业资源,土壤质量和环境状况直接影响粮食产量和质量。为有效监测和管理寒地黑土质量和环境变化情况,构建了一种基于物联网(IoT)技术的寒地黑土质量信息监测系统。该系统通过传感器采集土壤湿度、温度、p... 寒地黑土是我国东北地区的重要农业资源,土壤质量和环境状况直接影响粮食产量和质量。为有效监测和管理寒地黑土质量和环境变化情况,构建了一种基于物联网(IoT)技术的寒地黑土质量信息监测系统。该系统通过传感器采集土壤湿度、温度、pH值和氮磷钾等养分数据,并利用无线网络传输至数据处理中心,进行数据存储、分析和可视化展示。设计地力评价模块,根据寒地作物种植需求,选择适合寒地黑土的地力评价因子,以选定的评价指标为基本对象,通过选取层次分析法进行指标权重分析,利用模糊综合评价法进行隶属度计算以进行寒地黑土信息评价;系统可实现土壤质量信息的实时监测,数据查询、分析、评价和下载。验证试验结果表明,该系统在寒地环境中数据测量稳定,土壤温度测量精度达到±0.3℃,湿度为±0.26%RH,pH值为±0.03,系统阈值报警响应时间平均为15 s。该系统实现了寒地黑土质量信息的中长期稳定监测,对地力的评价符合农业部标准,可为肥料施用等农田管理提供科学合理的建议,进而提高管理效率,实现作物增产增收。 展开更多
关键词 寒地黑土 质量监测 MCGS iot技术 可视化 地力评价
在线阅读 下载PDF
IOTA-Based Authentication for IoT Devices in Satellite Networks
2
作者 D.Bernal O.Ledesma +1 位作者 P.Lamo J.Bermejo 《Computers, Materials & Continua》 2026年第1期1885-1923,共39页
This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the fi... This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks. 展开更多
关键词 Satellite iot decentralized authentication directed acyclic graph iotA identity verifiable credentials
在线阅读 下载PDF
基于GIS+IoT的历史建筑智能监测预警平台设计与实现
3
作者 赵小阳 张秀英 +1 位作者 邱镛康 付乐宜 《工程勘察》 2026年第1期50-56,70,共8页
广州是我国第一批国家历史文化名城。名城保护领域对科学性的要求促使很多时空信息技术得以应用。历史建筑是名城保护的物质空间载体,本文以广州市H区为试点,在历史建筑关键部位布设摄像头、位移传感器、烟火传感器等物联感知设备,设计... 广州是我国第一批国家历史文化名城。名城保护领域对科学性的要求促使很多时空信息技术得以应用。历史建筑是名城保护的物质空间载体,本文以广州市H区为试点,在历史建筑关键部位布设摄像头、位移传感器、烟火传感器等物联感知设备,设计并研发历史建筑智能监测预警平台,实现24 h不间断的人员闯入、位移监测、烟火识别等风险监测,提出三级预警参数与机制,将疑似异常信息分类分级研判并分通道予以预警报告,在试点区取得较好的应用效果。实践表明,该方法可提供历史建筑“AI+物联网+互联网+”融合的“现状上图一体化、人工巡查智能化、风险预警智慧化”的监管保护新模式,运用科技手段实现历史文化遗产实时安全监测,显著降低人工巡查巡检工作量,对历史文化遗产保护和城市安全管理具有借鉴意义。 展开更多
关键词 文化遗产 历史建筑 物联感知 安全监测 监测预警 AI预警
原文传递
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
4
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection iot environment
在线阅读 下载PDF
A brief review on comparative analysis of IoT-based healthcare system for breast cancer prediction
5
作者 Krishna Murari Rajiv Ranjan Suman 《Medical Data Mining》 2026年第1期46-58,共13页
The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare I... The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts. 展开更多
关键词 iot healthcare system machine learning breast cancer prediction medical data mining security challenges
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
6
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS Internet of Things(iot)
在线阅读 下载PDF
基于北斗和NB-IoT智能应急救援头盔
7
作者 张帆 卢超 +3 位作者 解伟峰 师向南 周昱琛 杨怡丹 《现代信息科技》 2026年第2期181-186,共6页
为了减少在紧急救援活动中的伤亡并提高紧急救援效率,设计了一种智能应急救援头盔,该设计采用北斗定位技术与NB-IoT通信技术,通过MQ-2与DHT11传感器分别采集烟雾浓度及环境温湿度数据,并借助BC26与ATK-1218-BD模块,基于LwM2M协议和NMEA-... 为了减少在紧急救援活动中的伤亡并提高紧急救援效率,设计了一种智能应急救援头盔,该设计采用北斗定位技术与NB-IoT通信技术,通过MQ-2与DHT11传感器分别采集烟雾浓度及环境温湿度数据,并借助BC26与ATK-1218-BD模块,基于LwM2M协议和NMEA-0183协议实现低功耗的数据上云,系统可实时监测测量数据,通过北斗定位人员位置,并具有智能报警功能。测试结果表明,该头盔能够有效提升救援效率,在实际应用中展现较好的反馈和推广前景。 展开更多
关键词 紧急救援 北斗定位 NB-iot通信 LwM2M协议
在线阅读 下载PDF
基于NB-IoT的污水管道监测系统设计 被引量:1
8
作者 沈莉丽 王素青 《工业控制计算机》 2025年第1期49-50,共2页
针对污水管道监测操作难度大的问题,利用NB-IoT无线通信技术的低功耗、广覆盖和低成本的优势,设计了一种基于NB-IoT的污水管道监测系统,对污水管道内部的甲烷浓度、液位以及温度等数据进行实时采集,并将采集数据通过NB-IOT组网传送至云... 针对污水管道监测操作难度大的问题,利用NB-IoT无线通信技术的低功耗、广覆盖和低成本的优势,设计了一种基于NB-IoT的污水管道监测系统,对污水管道内部的甲烷浓度、液位以及温度等数据进行实时采集,并将采集数据通过NB-IOT组网传送至云管理平台,实现数据实时监测。 展开更多
关键词 NB-iot 污水管道 实时监测 STM32
在线阅读 下载PDF
A Robust Security Detection Strategy for Next Generation IoT Networks
9
作者 Hafida Assmi Azidine Guezzaz +4 位作者 Said Benkirane Mourade Azrour Said Jabbour Nisreen Innab Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2025年第1期443-466,共24页
Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f... Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS. 展开更多
关键词 iot security intrusion detection RF KNN SVM EL NSL-KDD Edge-Iiot
在线阅读 下载PDF
基于NB-IoT的轨道交通监测系统设计
10
作者 王敏 史歌 王静 《自动化与仪器仪表》 2025年第9期240-244,共5页
随着城市轨道交通客流压力的日益增加,传统监测技术在实时性、覆盖范围及能效方面存在不足。鉴于此,研究提出一种基于窄带物联网的轨道交通监测系统,采用分级机制提升关键数据传输效率,同时结合隐马尔科夫模型与长短时记忆网络,将客流... 随着城市轨道交通客流压力的日益增加,传统监测技术在实时性、覆盖范围及能效方面存在不足。鉴于此,研究提出一种基于窄带物联网的轨道交通监测系统,采用分级机制提升关键数据传输效率,同时结合隐马尔科夫模型与长短时记忆网络,将客流状态与历史数据共同用于时间序列预测。实验结果显示,所设计系统在实际轨道交通场景中具备良好的性能表现,数据完整率达到98.83%,丢包率低于2%,通过分级传输机制网络负载降低30%,关键数据传输时延降至500至700毫秒范围内。所构建的客流预测模型短期预测精度为97.03%,长期预测误差为0.73%。系统应用后,乘客平均候车时间由8分钟降至7分钟以下,拥堵区域占比减少至11.67%。研究结果表明,该系统具备高精度、低延迟的监测能力,可有效提升轨道交通的调度效率与乘客出行体验,具有良好的工程推广价值。 展开更多
关键词 轨道交通 监测 客流量 NB-iot 隐马尔科夫
原文传递
NB-IoT环境下基于区块链技术的智慧停车诱导系统信任评估研究
11
作者 黄宇达 张矿伟 +1 位作者 赵红专 李学威 《科学技术创新》 2025年第2期72-77,共6页
为解决智慧停车诱导系统中停车场、车辆、RSU设备之间存在的信息交互不可信及交易不可靠等问题,提出了一种基于区块链技术的信任评估机制。首先,通过对比各种通信方案优缺点,选择窄带物联网作为网络环境,搭建基于区块链技术的智慧停车... 为解决智慧停车诱导系统中停车场、车辆、RSU设备之间存在的信息交互不可信及交易不可靠等问题,提出了一种基于区块链技术的信任评估机制。首先,通过对比各种通信方案优缺点,选择窄带物联网作为网络环境,搭建基于区块链技术的智慧停车诱导系统整体框架。其次,基于物联网节点行为考虑选择数据分组转发量、传输数据分组的重复率以及传输数据传输时延作为信任评估指标,引入分段线性函数,建立有等级划分的信任评估模型,结合智能合约形成可靠的交易凭证。最后,对基于区块链技术的停车信息交互过程进行优化,保证了信息交互的安全性。本文为智慧停车诱导系统的信任评估机制研究提供可靠理论基础。 展开更多
关键词 NB-iot 智慧停车 区块链 信任评估 节点行为 交易凭证
在线阅读 下载PDF
基于IoT技术的多通信频段电力监控系统设计
12
作者 李华嵩 陈善昊烜 +1 位作者 陈鸿江 庄灿 《机电工程技术》 2025年第19期136-141,共6页
针对加油站位置分布分散、人工巡检困难、电气线路安全隐患等问题,设计了一种基于物联网(IoT)技术的多频段通信远程加油站电力监控系统。本系统选用STM32单片机为控制核心通过RS-485接口采用Modbus-TCP协议进行电压、电流、温度等数据... 针对加油站位置分布分散、人工巡检困难、电气线路安全隐患等问题,设计了一种基于物联网(IoT)技术的多频段通信远程加油站电力监控系统。本系统选用STM32单片机为控制核心通过RS-485接口采用Modbus-TCP协议进行电压、电流、温度等数据的采集,通过MQTT通信方式将本地数据以JSON格式上传至服务器端,实现终端设备与应用的互联。通过ME909s-821模组和W5500芯片实现GSM、WCDMA、LTE及以太网等多种通信方式,以适应不同地区信号强度的差异,确保数据交互的稳定性。实验结果表明,该系统能够实现对加油站现场用电情况和安全状态的连续监控,有效降低管理成本和减少安全事故的数量。与现有技术相比,本系统在网络适应性、数据安全性和系统稳定性方面具有显著优势,为加油站电力监控提供了一种新的解决方案。 展开更多
关键词 iot技术 Modbus-TCP协议 多频段通信 电力监控
在线阅读 下载PDF
NB-IoT环境下智慧停车诱导系统停车位选择及诱导方案研究
13
作者 黄宇达 张矿伟 +1 位作者 赵红专 李学威 《科学技术创新》 2025年第1期222-228,共7页
随着城市化进程的不断加速与机动车数量的持续增长,停车难如今已成为城市可持续健康发展的一个亟待解决的问题。传统停车管理方式效率低下,无法满足现代城市实际停车需求。基于NB-IoT的智慧停车诱导系统通过集成物联网、大数据、云计算... 随着城市化进程的不断加速与机动车数量的持续增长,停车难如今已成为城市可持续健康发展的一个亟待解决的问题。传统停车管理方式效率低下,无法满足现代城市实际停车需求。基于NB-IoT的智慧停车诱导系统通过集成物联网、大数据、云计算和人工智能等现代信息技术,实现了对停车资源的智能化管理和优化配置。本文讨论了NB-IoT技术在智慧停车诱导系统中的应用,并提出一套完整的技术解决方案,并对其进行了相关实证研究和分析。研究结果表明,该系统能够有效提高停车效率,改善用户体验,缓解交通压力,并为未来城市发展与规划提供了价值参考依据。 展开更多
关键词 NB-iot技术 智慧停车诱导系统 系统架构 车位选择算法 导航定位 停车资源管理
在线阅读 下载PDF
基于IOT技术的智能配电网运行状态监测与故障诊断
14
作者 王琪 武加晖 《电力设备管理》 2025年第19期12-14,共3页
随着智能配电网规模不断扩大,其安全问题也越发严峻。本文提出了基于IOT技术的智能配电网运行状态监测方法,首先建立了IOT技术下的智能配电网监测系统模型,然后介绍了智能配电网抗差状态估计,并提出了多元数据融合的智能配电网状态监测... 随着智能配电网规模不断扩大,其安全问题也越发严峻。本文提出了基于IOT技术的智能配电网运行状态监测方法,首先建立了IOT技术下的智能配电网监测系统模型,然后介绍了智能配电网抗差状态估计,并提出了多元数据融合的智能配电网状态监测算法,最后对智能配电网运行状态进行了仿真分析,并对发生故障进行了诊断。仿真结果显示,本文建立的监测模型可以对智能配电网进行实时监测,并能提高故障诊断精度,有力保障了智能配电网的安全运行。 展开更多
关键词 智能配电网 状态监测 故障诊断 iot技术
在线阅读 下载PDF
Research on Interoperability of IoT Devices and Analysis of Standardization Progress
15
作者 Yinghao Tang 《机械工程与设计(中英文版)》 2025年第1期1-6,共6页
The rapid advancement of the Internet of Things(IoT)has led to the proliferation of connected devices across various domains,including smart cities,industrial automation,and healthcare.However,interoperability challen... The rapid advancement of the Internet of Things(IoT)has led to the proliferation of connected devices across various domains,including smart cities,industrial automation,and healthcare.However,interoperability challenges arising from heterogeneous communication protocols,diverse data formats,and fragmented standardization efforts hinder the seamless integration of IoT systems.This paper explores the current state of IoT interoperability,analyzing key challenges,existing standardization initiatives,and emerging technological solutions.We examine the role of middleware,gateway solutions,artificial intelligence(AI),blockchain,and edge computing in facilitating interoperability.Furthermore,we provide a comparative analysis of major IoT standards and discuss the potential for greater convergence among standardization efforts.The findings highlight that while significant progress has been made,a unified and widely accepted interoperability framework remains elusive.Addressing these challenges requires collaborative efforts among industry stakeholders,researchers,and policymakers to establish robust and scalable interoperability solutions,ensuring the continued growth and efficiency of IoT ecosystems. 展开更多
关键词 iot Interoperability Communication Protocols Standardization Initiatives Middleware Solutions Edge Computing Blockchain iot Integration
在线阅读 下载PDF
IECC-SAIN:Innovative ECC-Based Approach for Secure Authentication in IoT Networks
16
作者 Younes Lahraoui Jihane Jebrane +2 位作者 Youssef Amal Saiida Lazaar Cheng-Chi Lee 《Computer Modeling in Engineering & Sciences》 2025年第7期615-641,共27页
Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with... Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with shorter key lengths,which significantly reduces the computational overhead required for authentication algorithms.This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields.By reducing reliance on costly point multiplication,the proposed algorithm significantly improves execution time,storage requirements,and communication cost across varying security levels.The proposed authentication protocol demonstrates superior performance when benchmarked against relevant ECC-based schemes,achieving reductions of up to 35.83%in communication overhead,62.51%in device-side storage consumption,and 71.96%in computational cost.The security robustness of the scheme is substantiated through formal analysis using the Automated Validation of Internet Security Protocols and Applications(AVISPA)tool and Burrows-Abadir-Needham(BAN)logic,complemented by a comprehensive informal analysis that confirms its resilience against various attack models,including impersonation,replay,and man-in-the-middle attacks.Empirical evaluation under simulated conditions demonstrates notable gains in efficiency and security.While these results indicate the protocol’s strong potential for scalable IoT deployments,further validation on real-world embedded platforms is required to confirm its applicability and robustness at scale. 展开更多
关键词 Industrial iot Elliptic Curve Cryptography(ECC) National Institute of Standards and Technology(NIST)curves mapping AVISPA BAN logic computational efficiency security scalable iot deployments
在线阅读 下载PDF
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
17
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data iot Iiot TMoT REAL-TIME LIGHTWEIGHT modeling
在线阅读 下载PDF
产教融合下车路协同IoT/AI技术应用探索 被引量:2
18
作者 许鹏飞 贾银洁 +1 位作者 陆超 于金阳 《合作经济与科技》 2025年第8期126-129,共4页
随着物联网(IoT)和人工智能(AI)技术的迅猛发展,智能交通系统正逐步成为未来交通领域的重要发展方向。车路协同作为智能交通系统的核心组成部分,通过实现车辆与路边设施的信息互联互通,极大地提高交通效率和安全性。宿迁学院智能物联综... 随着物联网(IoT)和人工智能(AI)技术的迅猛发展,智能交通系统正逐步成为未来交通领域的重要发展方向。车路协同作为智能交通系统的核心组成部分,通过实现车辆与路边设施的信息互联互通,极大地提高交通效率和安全性。宿迁学院智能物联综合实训室的建设应运而生,旨在通过产教融合模式培养适应未来智能交通系统发展需求的高素质复合型人才。本文从实验室简介、开设的实验项目、面向的专业、主要设备及其具体应用等方面,详细介绍智能物联综合实训室在车路协同IoT/AI技术应用与产教融合方面的探索与实践,重点分析车牌识别、车道线识别、交通指示牌识别和交通信号灯识别等关键技术在智能车无人驾驶系统中的应用。 展开更多
关键词 产教融合 车路协同 iot技术 AI技术
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
19
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data iot adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
基于Transformer模型的5G P-IoT在高压设备测温中的应用
20
作者 秦秉东 陈保豪 +4 位作者 刘博林 张国翊 朱海龙 索思亮 欧嘉俊 《广东电力》 北大核心 2025年第4期109-116,共8页
针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关... 针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关键部位部署无源温度传感器,利用反向散射通信技术实现低功耗数据传输,并借助5G网络将数据传输至边缘服务器处理。随后,采用基于Transformer的异常检测模型,通过多头注意力机制有效捕捉温度数据中的时序特征,结合最大池化操作实现对异常温度的准确识别与预警。实验结果表明,该方案在高电磁干扰环境下的传输成功率达到99.0%,在温度异常检测任务中的精度、召回率和F1值分别为98.7%、97.5%和96.9%,显著优于LSTM和GRU等传统时序模型。研究成果验证了所提方法在复杂高压场景下的适用性和稳定性,可为后续在更高电压等级的特高压设备中推广应用奠定技术基础。 展开更多
关键词 5G P-iot 无源温度传感器 Transformer模型 特高压设备 温度异常检测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部