International Journal of Ophthalmology(IJO)--English edition(ISSN 1672-5123),established in 2008,was accepted for coverage in SCIE in September,2010,it is the only ophthalmological periodical in China
To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, wh...To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.展开更多
Professor W.B.Lee is the director of Department of Manufacturing Engineering of Hong KongPolytechnic University and a scholar of great attainments in manufacturing science and technology,ma-terials processing,ultra-pr...Professor W.B.Lee is the director of Department of Manufacturing Engineering of Hong KongPolytechnic University and a scholar of great attainments in manufacturing science and technology,ma-terials processing,ultra-precision machining.At present he has published over90 papers on the variousjournals and international conferences,2 books and2 keynote papers.Because of his research reputationProfessor W.B.Lee has been invited to be honorary professor of Nanjing University of Aeronautics andAstronautics(NUAA)in1996.On14 Decemeber,this year,Prof.W.B.Lee was one again invited tobe honorary member of Editorial Board of Journal of Nanjing University of Aeronautics and Astronautics(JNUAA).NUAA specially promulgates the formal document for Prof.W.B.Lee and he accepted withpleasure the honorary title.展开更多
News that the U.S. will allow companies to pursue anti-subsidy action against Chinese imports paves the way for companies within the textile industry to seek trade protection,though it remains to be seen how the situa...News that the U.S. will allow companies to pursue anti-subsidy action against Chinese imports paves the way for companies within the textile industry to seek trade protection,though it remains to be seen how the situation may affect the U.S. cotton industry,analysts展开更多
International Journal of Minerals,Metallurgy and Materials is dedicated to the publication and the dissemination of original research articles(and occasional invited reviews)in the fields of Minerals,Metallurgy and Ma...International Journal of Minerals,Metallurgy and Materials is dedicated to the publication and the dissemination of original research articles(and occasional invited reviews)in the fields of Minerals,Metallurgy and Materials.It is covered by EI Compendex,SCI Expanded,Chemical Abstract,etc.展开更多
Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silico...Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-oninsulator(SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared(MIR) range(2–4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphireon-silicon, Si Ge alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute's research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices(e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path(e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential futureresearch topics and engineering challenges along with opportunities.展开更多
In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete F...In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete Fourier transform spread orthogonal frequency division multiplexing(DFT-S OFDM) in underwater visible light communication(UVLC) systems. Cascaded post-equalization schemes are suggested to compensate the system impairments. For the first time, a two-level post-equalizer is presented to mitigate the nonlinear effect and improve the system performance of UVLC. The first post-equalization is based on a novel recursive least square Volterra. These modulation formats are all experimentally demonstrated with corresponding digital signal processing(DSP) algorithms. The experimental results show that single carrier modulations including CAP and DFT-S OFDM can outperform OFDM. Our experiment results show that up to 3 Gb/s over a 1.2 m underwater visible light transmission can be achieved by using DFT-S OFDM 64 QAM and CAP-64. The measured bit error rate is well under the hard decision-forward error correction(HD-FEC) threshold of 3.8 × 10^(-3).展开更多
There is a rapidly growing demand to use silicon and silicon nitride(Si3N4) integrated photonics for sensing applications, ranging from refractive index to spectroscopic sensing. By making use of advanced CMOS techn...There is a rapidly growing demand to use silicon and silicon nitride(Si3N4) integrated photonics for sensing applications, ranging from refractive index to spectroscopic sensing. By making use of advanced CMOS technology,complex miniaturized circuits can be easily realized on a large scale and at a low cost covering visible to mid-IR wavelengths. In this paper we present our recent work on the development of silicon and Si3N4-based photonic integrated circuits for various spectroscopic sensing applications. We report our findings on waveguide-based absorption, and Raman and surface enhanced Raman spectroscopy. Finally we report on-chip spectrometers and on-chip broadband light sources covering very near-IR to mid-IR wavelengths to realize fully integrated spectroscopic systems on a chip.展开更多
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon m...Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.展开更多
We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of ...We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.展开更多
We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optica...We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.展开更多
Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional opti...Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.展开更多
The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition me...The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.展开更多
In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber la...In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber laser for the first time to our knowledge.Few-layer MoSe2 nanosheets were prepared by liquid-phase exfoliation method and characterized by x ray diffractometer,Raman spectroscopy,and atomic force microscopy.The obtained fewlayer MoSe2 dispersion is further composited with a polymer material for convenient fabrication of MoSe2 thin films.Then,we investigated the nonlinear optical(NLO) absorption property of the few-layer MoSe2 film using a balanced twin-detector measurement technique.Both the saturable absorption and TPA effects of the few-layer MoSe2 film were found by increasing the input optical intensity.The saturable absorption shows a modulation depth of 0.63% and a low nonsaturable loss of 3.5%,corresponding to the relative modulation depth of 18%.The TPA effect occurred when the input optical intensity exceeds 260 MW∕cm2.Furthermore,we experimentally exploit the saturable absorption of few-layer MoSe2 film to mode lock an all-fiber erbium-doped fiber laser.Stable soliton mode locking at 1558 nm center wavelength is achieved with pulse duration of 1.45 ps.It was also observed that the TPA process suppresses the mode-locking operation in the case of higher optical intensity.Our results indicate that layered MoSe2,as another two-dimensional nanomaterial,can provide excellent NLO properties(e.g.,saturable absorption and TPA) for potential applications in ultrashort pulse generation and optical limiting.展开更多
In this paper, our recent research work on the total-internal-reflection optical switch is presented. The thermo-optic effect of polymeric materials and the photon-induced carrier effect of GaAlAs/GaAs are used in our...In this paper, our recent research work on the total-internal-reflection optical switch is presented. The thermo-optic effect of polymeric materials and the photon-induced carrier effect of GaAlAs/GaAs are used in our devices.展开更多
The global navigation satellite system(GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, ...The global navigation satellite system(GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, is the indoor equivalent. One hierarchy of solutions, visible light positioning(VLP) with its promise of centimeter-scale accuracy and widespread coverage indoors, has emerged as a viable, easy to configure, and inexpensive candidate. We investigate how the state-of-the-art VLP systems fare against two hard barriers in indoor positioning: the need for high accuracy and the need to position in the threedimensions(3D). We find that although most schemes claim centimeter-level accuracy for some proposed space or plane, those accuracies do not translate into a realistic 3D space due to diminishing field-of-view in 3D and assumptions made on the operating space. We do find two favorable solutions in ray–surface positioning and gain differentials. Both schemes show good positioning errors, low-cost potential, and single-luminaire positioning functionality.展开更多
文摘International Journal of Ophthalmology(IJO)--English edition(ISSN 1672-5123),established in 2008,was accepted for coverage in SCIE in September,2010,it is the only ophthalmological periodical in China
文摘To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.
文摘Professor W.B.Lee is the director of Department of Manufacturing Engineering of Hong KongPolytechnic University and a scholar of great attainments in manufacturing science and technology,ma-terials processing,ultra-precision machining.At present he has published over90 papers on the variousjournals and international conferences,2 books and2 keynote papers.Because of his research reputationProfessor W.B.Lee has been invited to be honorary professor of Nanjing University of Aeronautics andAstronautics(NUAA)in1996.On14 Decemeber,this year,Prof.W.B.Lee was one again invited tobe honorary member of Editorial Board of Journal of Nanjing University of Aeronautics and Astronautics(JNUAA).NUAA specially promulgates the formal document for Prof.W.B.Lee and he accepted withpleasure the honorary title.
文摘News that the U.S. will allow companies to pursue anti-subsidy action against Chinese imports paves the way for companies within the textile industry to seek trade protection,though it remains to be seen how the situation may affect the U.S. cotton industry,analysts
文摘International Journal of Minerals,Metallurgy and Materials is dedicated to the publication and the dissemination of original research articles(and occasional invited reviews)in the fields of Minerals,Metallurgy and Materials.It is covered by EI Compendex,SCI Expanded,Chemical Abstract,etc.
文摘Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-oninsulator(SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared(MIR) range(2–4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphireon-silicon, Si Ge alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute's research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices(e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path(e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential futureresearch topics and engineering challenges along with opportunities.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61571133)the National Key Research and Development Program of China(No.2017YFB0403603)
文摘In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete Fourier transform spread orthogonal frequency division multiplexing(DFT-S OFDM) in underwater visible light communication(UVLC) systems. Cascaded post-equalization schemes are suggested to compensate the system impairments. For the first time, a two-level post-equalizer is presented to mitigate the nonlinear effect and improve the system performance of UVLC. The first post-equalization is based on a novel recursive least square Volterra. These modulation formats are all experimentally demonstrated with corresponding digital signal processing(DSP) algorithms. The experimental results show that single carrier modulations including CAP and DFT-S OFDM can outperform OFDM. Our experiment results show that up to 3 Gb/s over a 1.2 m underwater visible light transmission can be achieved by using DFT-S OFDM 64 QAM and CAP-64. The measured bit error rate is well under the hard decision-forward error correction(HD-FEC) threshold of 3.8 × 10^(-3).
基金ERC-In Spectra Advanced Grant, ERC-MIRACLE, ERC-ULPPIC and Methusalem (Smart Photonics Chips) for their supportfunding agencies IWT and FWO that helped in carrying out various parts of the work presented in the paper
文摘There is a rapidly growing demand to use silicon and silicon nitride(Si3N4) integrated photonics for sensing applications, ranging from refractive index to spectroscopic sensing. By making use of advanced CMOS technology,complex miniaturized circuits can be easily realized on a large scale and at a low cost covering visible to mid-IR wavelengths. In this paper we present our recent work on the development of silicon and Si3N4-based photonic integrated circuits for various spectroscopic sensing applications. We report our findings on waveguide-based absorption, and Raman and surface enhanced Raman spectroscopy. Finally we report on-chip spectrometers and on-chip broadband light sources covering very near-IR to mid-IR wavelengths to realize fully integrated spectroscopic systems on a chip.
基金supported by the Program for Equipment Pre-research Field Funds(No.6140414040116CB01012)the National Natural Science Foundation of China(Nos.61575051 and 11704086)the 111 project of the Harbin Engineering University(No.B13015)
文摘Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.
基金supported by the Major International Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61120106012
文摘We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.
基金financial support from the National Science Foundation of China (NSFC)the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (HKSAR) under project N_HKUST606/10+5 种基金the State Key Laboratory on Integrated Optoelectronics, ChinaOpen Fund of the State Key Laboratory on Integrated Optoelectronics under project IOSKL2013KF04the Innovation and Technology Fund (ITF) of the HKSAR under project ITS/023/14 and ITS/087/13the Proof-of-Concept Fund (PCF) of The Hong Kong University of Science and Technology (HKUST) under project no. PCF007.12/13the General Research Fund (GRF) of the HKSAR under project no. 16208114postdoctoral fellowship support from the Hong Kong Scholars Program 2013
文摘We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.
基金support from the Royal Academy of Engineering (RAEng)
文摘Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.
基金supported by the National Science Centre (NCN, Poland) under the research project entitled “Passive mode-locking in dispersion-managed ultrafast thulium-doped fiber lasers” (decision no. DEC-2013/11/D/ST7/03138)
文摘The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.
基金supported partially by the National Science Foundation of China (61475129,61177044,61107038,and 61275050)the Project for Undergraduates’ Innovation and Undertaking in Xiamen University (0630ZX11A1)
文摘In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber laser for the first time to our knowledge.Few-layer MoSe2 nanosheets were prepared by liquid-phase exfoliation method and characterized by x ray diffractometer,Raman spectroscopy,and atomic force microscopy.The obtained fewlayer MoSe2 dispersion is further composited with a polymer material for convenient fabrication of MoSe2 thin films.Then,we investigated the nonlinear optical(NLO) absorption property of the few-layer MoSe2 film using a balanced twin-detector measurement technique.Both the saturable absorption and TPA effects of the few-layer MoSe2 film were found by increasing the input optical intensity.The saturable absorption shows a modulation depth of 0.63% and a low nonsaturable loss of 3.5%,corresponding to the relative modulation depth of 18%.The TPA effect occurred when the input optical intensity exceeds 260 MW∕cm2.Furthermore,we experimentally exploit the saturable absorption of few-layer MoSe2 film to mode lock an all-fiber erbium-doped fiber laser.Stable soliton mode locking at 1558 nm center wavelength is achieved with pulse duration of 1.45 ps.It was also observed that the TPA process suppresses the mode-locking operation in the case of higher optical intensity.Our results indicate that layered MoSe2,as another two-dimensional nanomaterial,can provide excellent NLO properties(e.g.,saturable absorption and TPA) for potential applications in ultrashort pulse generation and optical limiting.
文摘In this paper, our recent research work on the total-internal-reflection optical switch is presented. The thermo-optic effect of polymeric materials and the photon-induced carrier effect of GaAlAs/GaAs are used in our devices.
基金supported in part by the Engineering Research Centers Program of the National Science Foundation under NSF Cooperative Agreement No.EEC-0812056
文摘The global navigation satellite system(GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, is the indoor equivalent. One hierarchy of solutions, visible light positioning(VLP) with its promise of centimeter-scale accuracy and widespread coverage indoors, has emerged as a viable, easy to configure, and inexpensive candidate. We investigate how the state-of-the-art VLP systems fare against two hard barriers in indoor positioning: the need for high accuracy and the need to position in the threedimensions(3D). We find that although most schemes claim centimeter-level accuracy for some proposed space or plane, those accuracies do not translate into a realistic 3D space due to diminishing field-of-view in 3D and assumptions made on the operating space. We do find two favorable solutions in ray–surface positioning and gain differentials. Both schemes show good positioning errors, low-cost potential, and single-luminaire positioning functionality.