期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhanced Photovoltage for Inverted Perovskite Solar Cells Using Delafossite CuCrO_(2) Hole Transport Material
1
作者 Xue-yan Shan Bin Tong +7 位作者 Shi-mao Wang Xiao Zhao Wei-wei Dong Gang Meng Zan-hong Deng Jing-zhen Shao Ru-hua Tao Xiao-dong Fang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第6期957-964,I0064-I0071,I0074,共17页
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexib... Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs. 展开更多
关键词 Perovskite solar cell inverted architecture Hole transport material CuCrO_(2) Open-circuit voltage
在线阅读 下载PDF
Preparation of CH_3NH_3PbI_3 thin films for solar cells via Vapor Transfer Method 被引量:1
2
作者 Kejie Feng Yitong Liu +2 位作者 Yuancheng Zhang Yujie Liu Xiaoliang Mo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1386-1389,共4页
Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate ... Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a balanced vacuum capsule. By adjusting the reaction tem- perature, CH_3NHl_3 saturated vapor which then reacts with Pbl_2 films can be controlled and the formation process of CH_3NH_3Pbl_3 perovskite films can be further influenced. Prepared perovskite films which ex- hibit pure phase, smooth surface and high crystallinity are assembled into planar heterojunction inverted solar cells. The whole fabrication process of solar cell devices is organic solution free. Finally, the cham- pion cell achieved power conversion efficiency (PCE) of 13.08% with negligible current-voltage hysteresis under fully open-air conditions. The photovoltaic performance could be further enhanced by optimizing perovskite composition and the device structure. 展开更多
关键词 Vapor Transfer Method Organometal halide perovskite Planar heterojunction inverted architecture Solar cells
在线阅读 下载PDF
MoO_(x) and V_(2)O_(x) as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices 被引量:2
3
作者 Xinchen Li Fengxian Xie +2 位作者 Shaoqing Zhang Jianhui Hou Wallace CH Choy 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期415-421,共7页
To achieve fabrication and cost competitiveness in organic optoelectronic devices that include organic solar cells(OSCs)and organic light-emitting diodes(OLEDs),it is desirable to have one type of material that can si... To achieve fabrication and cost competitiveness in organic optoelectronic devices that include organic solar cells(OSCs)and organic light-emitting diodes(OLEDs),it is desirable to have one type of material that can simultaneously function as both the electron and hole transport layers(ETLs and HTLs)of the organic devices in all device architectures(i.e.,normal and inverted architectures).We address this issue by proposing and demonstrating Cs-intercalated metal oxides(with various Cs mole ratios)as both the ETL and HTL of an organic optoelectronic device with normal and inverted device architectures.Our results demonstrate that the new approach works well for widely used transition metal oxides of molybdenum oxide(MoOx)and vanadium oxide(V_(2)O_(x)).Moreover,the Cs-intercalated metaloxide-based ETL and HTL can be easily formed under the conditions of a room temperature,water-free and solution-based process.These conditions favor practical applications of OSCs and OLEDs.Notably,with the analyses of the Kelvin Probe System,our approach of Cs-intercalated metal oxides with a wide mole ratio range of transition metals(Mo or V)/Cs from 1:0 to 1:0.75 can offer significant and continuous work function tuning as large as 1.31 eV for functioning as both an ETL and HTL.Consequently,our method of intercalated metal oxides can contribute to the emerging large-scale and low-cost organic optoelectronic devices. 展开更多
关键词 metal oxides carrier transport layers normal and inverted device architectures organic light-emitting diodes organic solar cells room-temperature solution process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部