Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homoge...Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homogeneous oxide semiconduc-tors.Herein,we propose the design of complementary inverter based on full ZnO TFTs.Li-N dual-doped ZnO(ZnO:(Li,N))acts as the p-type channel and Al-doped ZnO(ZnO:Al)serves as the n-type channel for fabrication of TFTs,and then the complemen-tary inverter is produced with p-and n-type ZnO TFTs.The homogeneous ZnO-based complementary inverter has typical volt-age transfer characteristics with the voltage gain of 13.34 at the supply voltage of 40 V.This work may open the door for the development of oxide complementary inverters for logic circuits.展开更多
With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are r...With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
With the increasing demand for high reliability and availability in power conversion equipment within power electronics systems,the fault diagnosis of neutral-point-clamped(NPC) three-level inverters has garnered wide...With the increasing demand for high reliability and availability in power conversion equipment within power electronics systems,the fault diagnosis of neutral-point-clamped(NPC) three-level inverters has garnered widespread attention.To address the challenges of fault feature extraction,this article proposes an end-to-end diagnostic approach based on a wavelet kernel convolutional neural network (WKCNN),capable of extracting multi-scale features from current signals to significantly enhance diagnostic accuracy.This method directly uses raw three-phase current signals as input,applying wavelet kernel convolution to automatically capture frequency-domain fault features,combined with a Softmax classifier optimized by the Adam algorithm to achieve fault diagnosis for NPC threelevel inverters.Experimental results under various operating conditions demonstrate that this approach maintains robust diagnostic accuracy across multiple fault scenarios,with comparative analysis further confirming its advantages in diagnostic efficiency and performance over traditional machine learning and other deep learning methods.展开更多
To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which rel...To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which relies on manual experience to set parameters(e.g.,noise tolerance,penalty parameter,number of decompositions),this paper achieves adaptive optimization of parameters through MPA algorithmto avoid the problemof feature information loss caused by manual parameter tuning,and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters;and then,adopts the PSO algorithm for theThen,the PSO algorithm is used to optimize the optimal batch size,the number of nodes in the hidden layer and the learning rate of the BiLSTM network,which significantly improves the model’s ability to capture the long-term dependent features of the PV inverter’s timing signals,to construct the PV grid-connected inverter prediction model of PSO-BiLSTM,and predict the capacitance value of the PVgrid-connected inverter.Finally,diagnostic experiments are carried out based on the expected capacitance value and the capacitance failure criterion.The results showthat compared with the traditional VMD algorithm,the MPA-optimised VMD improves the signal-to-noise ratio(SNR)of the signal decomposition from 28.5 to 33.2 dB(16.5%improvement).After combining with the PSO-BiLSTM model,the mean absolute percentage error(MAPE)of the fault diagnosis is reduced to 1.31%,and the coefficient of determination(R2)is up to 0.99.It is concluded that the present method has excellent diagnostic performance of PV grid-connected inverter data signals and effectively improves the accuracy of PV grid-connected inverter diagnosis.展开更多
Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsP...Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsPbI_(3)perovskite solar cells(PSCs)still lags far behind that of both organic-inorganic hybrid counterparts and the theoretical PCE limit,primarily restricted by severe fill factor(FF)and opencircuit voltage(VOC)deficits.Herein,an in-situ self-crosslinking strategy is proposed to construct high-performance inverted inorganic PSCs by incorporating acrylate monomers as additives into CsPbI_(3)perovskite precursors.During the thermal annealing process of perovskite films,acrylate monomers can form network structures by breaking the C=C groups through an in-situ polymerization reaction,mainly anchored at the grain boundaries(GBs)and on the surfaces of perovskite.Meanwhile,the C=O groups of acrylate polymers can favorably coordinate with uncoordinated Pb^(2+),thereby decreasing defect density and stabilizing the perovskite phase.Particularly,with multiple crosslinking and passivation sites,the incorporation of dipentaerythritol pentaacrylate(DPHA)can effectively improve the perovskite film quality,suppress nonradiative recombination,and block moisture erosion.Consequently,the DPHAbased PSC achieves a champion PCE of 20.05%with a record-high FF of 85.05%,both of which rank among the top in the performance of inverted CsPbI_(3)PSCs.Moreover,the unencapsulated DPHA-based device exhibits negligible hysteresis,remarkably improved long-term storage,and operational stability.This work offers a facile and useful strategy to simultaneously promote the efficiency and device stability of inverted inorganic PSCs.展开更多
Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivati...Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivation defects.However,the stability of the SAM molecules,the stability of the molecular anchoring conformation,and the impact on the stability of subsequent PSCs have not been clearly elucidated.In this review,we systematically discussed the intrinsic connection between the molecular conformation(including anchoring groups,spacer groups,and terminal groups)and the stability of SAMs.Sequentially,the research progress of SAMs as HSLs in improving the stability of PSCs is summarized,including photostability,thermal stability,ion migration,and residual stress.Finally,we look forward to the shortcomings and possible challenges of using SAMs as HSLs for inverted PSCs.展开更多
The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process o...The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.展开更多
The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the...The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices.展开更多
We use out-of-time order correlators(OTOCs)to investigate the quantum instability and Ehrenfest time for an inverted harmonic oscillator(IHO).For initial states located in the stable manifolds of the IHO we find that ...We use out-of-time order correlators(OTOCs)to investigate the quantum instability and Ehrenfest time for an inverted harmonic oscillator(IHO).For initial states located in the stable manifolds of the IHO we find that the corresponding OTOC exhibits identical evolutionary characteristics to the saddle point before the Ehrenfest time.For initial states located in the unstable manifolds,the OTOCs still grow exponentially but the time to maintain exponential growth is related to the center position of its wave packet in phase space.Moreover,we use the Husimi Q function to visualize the quantum wave packets during exponential growth of the OTOCs.Our results show that quantum instability exists at arbitrary orbits in the IHO system,and the Ehrenfest time in the IHO system depends not only on the photon number of the initial system but also on the central positions of the initial states in phase space.展开更多
Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indiu...Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indium tin oxide(ITO)surface and the desorption of hydroxyl(OH)from the ITO surface induced by polar solvents can lead to the formation of vacancies.Herein,a dimethylacridine-based SAM is incorporated into the perovskite precursor solution.This SAM can be extruded from the precursor solution and enriched on the bottom surface of the perovskite,filling the vacancies and in situ forming a mixed SAM with MeO-2PACz as a hole-selective layer(HSL).The in situ formed mixed SAM optimizes the energy level alignment between the HSL and the perovskite,facilitating hole extraction and alleviating the residual strain of the perovskite film.Consequently,the perovskite solar cells(PSCs),based on the mixed SAM,achieve a power conversion efficiency(PCE)of 25.69%and exhibit excellent operational stability.When this approach is applied to 1.78 eV bandgap PSC devices,it yields a PCE of 20.08%.This work presents a unique strategy for fabricating both high-quality perovskite films and superior buried interfaces,which is also applicable to wide-bandgap PSCs.展开更多
Support and maintenance of tunnel excavations during operation are critical to ensure the safety and stability of tunnels.This study proposes a specialized support technology for a railroad tunnel in western China,cha...Support and maintenance of tunnel excavations during operation are critical to ensure the safety and stability of tunnels.This study proposes a specialized support technology for a railroad tunnel in western China,characterized by substantial deformation and a limited inherent self-stabilizing capacity.The method involves the application of a foam concrete compressible layer at the inverted arch of the tunnel.The effectiveness of the foam concrete layer in mitigating the effect of the surrounding rock on the tunnel inverted arch structure is investigated by a combination of indoor tests and numerical simulations.The laboratory test results show that the train load has little effect on the compressive performance of the foamed concrete compressible layer,which indicates that the foamed concrete compressible layer can be applied in the tunnel invert.By analyzing the support effect of the established model,it is found that the foam concrete compressible layer can effectively absorb the deformation pressure generated by the surrounding rock and protect the secondary lining structure,when the compressible layer density is 500 kg/m^(3) and the thickness is set to 20 cm,the supporting effect is the best.展开更多
The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium he...The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.展开更多
The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interl...The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.展开更多
In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the p...In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.展开更多
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt...Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.展开更多
Variable material screw-based material extrusion(S-MEX)3D printing technology provides a novel approach for fabricating composites with continuous material gradients.Nevertheless,achieving precise alignment between th...Variable material screw-based material extrusion(S-MEX)3D printing technology provides a novel approach for fabricating composites with continuous material gradients.Nevertheless,achieving precise alignment between the process parameters and material compositions is challenging because of fluctuations in the melt rheological state caused by material variations.In this study,an invertible extrusion prediction model for 0-40 wt% short carbon fiber reinforced polyether-ether-ketone(SCF/PEEK)in the S-MEX process was established using an invertible neural network(INN)that demonstrated the capabilities of forward flow rate prediction and inverse process optimization with accuracies of 0.852 and 0.877,respectively.Moreover,a strategy for adjusting the screw speeds using process parameters obtained from the INN was developed to maintain a consistent flow rate during the variable material printing process.Benefiting from uniform flow,the linewidth accuracy was improved by 77%,and the surface roughness was reduced by 51%.Adjusting the process parameters by using an INN offers significant potential for flow rate control and the enhancement of the overall performance of variable material 3D printing.展开更多
Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,th...Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction.Therefore,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping rule.Firstly,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,respectively.Then,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute features.This noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference image.Additionally,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed model.Experimental results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden information.Furthermore,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.展开更多
Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant externa...Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant external stress,such as being kept at a convex bending state,imposing external stress on the brittle perovskite films and causing the fPSCs long-term stability problems.Overcoming these issues is vital.Herein,we propose an effective way to enhance the stability of the fPSCs under convex bending by modulating the residual stress of perovskite film for the first time.Specifically,we have carefully designed a synergistic strain engineering to toughen the perovskite films by introducing 1-butyl-3-methylimidazolium tetrafluoroborate,citric acid,and a novel cross-linker,5-(1,2-dithiolan-3-yl)pentanoate into perovskite films simultaneously.Besides passivating the perovskite films,the multiple additives effectively convert the residual stress within the perovskite films from tensile to compressive type to alleviate the detrimental impact of bending on the flexible perovskite films.As a result,the optimal efficiencies of triple-additive modified fPSCs have achieved 22.19%(0.06 cm^(2))and 19.44%(1.02 cm^(2)).More importantly,the strategy could significantly improve the stability of the perovskite films and fPSCs at a convex bending state.Our approach is inductive for the future practical field applications of high-performance fPSCs.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LZ24E020001).
文摘Complementary inverter is the basic unit for logic circuits,but the inverters based on full oxide thin-film transistors(TFTs)are still very limited.The next challenge is to realize complementary inverters using homogeneous oxide semiconduc-tors.Herein,we propose the design of complementary inverter based on full ZnO TFTs.Li-N dual-doped ZnO(ZnO:(Li,N))acts as the p-type channel and Al-doped ZnO(ZnO:Al)serves as the n-type channel for fabrication of TFTs,and then the complemen-tary inverter is produced with p-and n-type ZnO TFTs.The homogeneous ZnO-based complementary inverter has typical volt-age transfer characteristics with the voltage gain of 13.34 at the supply voltage of 40 V.This work may open the door for the development of oxide complementary inverters for logic circuits.
基金supported by the Project of National Natural Science Foundation of China under Grant 52407060 and 52422704supported by Liaoning Province science and technology plan doctoral project under Grant 2023-BSBA-255.
文摘With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported in part by Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China under Grant 2024C01014the National Natural Science Foundation of China under Grant52177055。
文摘With the increasing demand for high reliability and availability in power conversion equipment within power electronics systems,the fault diagnosis of neutral-point-clamped(NPC) three-level inverters has garnered widespread attention.To address the challenges of fault feature extraction,this article proposes an end-to-end diagnostic approach based on a wavelet kernel convolutional neural network (WKCNN),capable of extracting multi-scale features from current signals to significantly enhance diagnostic accuracy.This method directly uses raw three-phase current signals as input,applying wavelet kernel convolution to automatically capture frequency-domain fault features,combined with a Softmax classifier optimized by the Adam algorithm to achieve fault diagnosis for NPC threelevel inverters.Experimental results under various operating conditions demonstrate that this approach maintains robust diagnostic accuracy across multiple fault scenarios,with comparative analysis further confirming its advantages in diagnostic efficiency and performance over traditional machine learning and other deep learning methods.
基金supported by Science and Technology Projects of Jiangsu Province(No.BE2022003)Science and Technology Projects of Jiangsu Province(No.BE2022003-5).
文摘To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which relies on manual experience to set parameters(e.g.,noise tolerance,penalty parameter,number of decompositions),this paper achieves adaptive optimization of parameters through MPA algorithmto avoid the problemof feature information loss caused by manual parameter tuning,and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters;and then,adopts the PSO algorithm for theThen,the PSO algorithm is used to optimize the optimal batch size,the number of nodes in the hidden layer and the learning rate of the BiLSTM network,which significantly improves the model’s ability to capture the long-term dependent features of the PV inverter’s timing signals,to construct the PV grid-connected inverter prediction model of PSO-BiLSTM,and predict the capacitance value of the PVgrid-connected inverter.Finally,diagnostic experiments are carried out based on the expected capacitance value and the capacitance failure criterion.The results showthat compared with the traditional VMD algorithm,the MPA-optimised VMD improves the signal-to-noise ratio(SNR)of the signal decomposition from 28.5 to 33.2 dB(16.5%improvement).After combining with the PSO-BiLSTM model,the mean absolute percentage error(MAPE)of the fault diagnosis is reduced to 1.31%,and the coefficient of determination(R2)is up to 0.99.It is concluded that the present method has excellent diagnostic performance of PV grid-connected inverter data signals and effectively improves the accuracy of PV grid-connected inverter diagnosis.
基金supported by the Program for Science and Technology Innovation Team in Zhejiang(Grant No.2021R01004)the Natural Science Foundation of Ningbo City(No.2023J119)+1 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project(2023QL029)K.C.Wong Magna Fund in Ningbo University,China。
文摘Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsPbI_(3)perovskite solar cells(PSCs)still lags far behind that of both organic-inorganic hybrid counterparts and the theoretical PCE limit,primarily restricted by severe fill factor(FF)and opencircuit voltage(VOC)deficits.Herein,an in-situ self-crosslinking strategy is proposed to construct high-performance inverted inorganic PSCs by incorporating acrylate monomers as additives into CsPbI_(3)perovskite precursors.During the thermal annealing process of perovskite films,acrylate monomers can form network structures by breaking the C=C groups through an in-situ polymerization reaction,mainly anchored at the grain boundaries(GBs)and on the surfaces of perovskite.Meanwhile,the C=O groups of acrylate polymers can favorably coordinate with uncoordinated Pb^(2+),thereby decreasing defect density and stabilizing the perovskite phase.Particularly,with multiple crosslinking and passivation sites,the incorporation of dipentaerythritol pentaacrylate(DPHA)can effectively improve the perovskite film quality,suppress nonradiative recombination,and block moisture erosion.Consequently,the DPHAbased PSC achieves a champion PCE of 20.05%with a record-high FF of 85.05%,both of which rank among the top in the performance of inverted CsPbI_(3)PSCs.Moreover,the unencapsulated DPHA-based device exhibits negligible hysteresis,remarkably improved long-term storage,and operational stability.This work offers a facile and useful strategy to simultaneously promote the efficiency and device stability of inverted inorganic PSCs.
基金supported by the Natural Science Foundation of China(22425903,U24A20568,61705102,62288102,22409091,22409090 and 62205142)the National Key R&D Program of China(2023YFB4204500)the Jiangsu Provincial Departments of Science and Technology(BE2022023,BK20220010,BZ2023060,BK20240561,and BK20240562)。
文摘Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivation defects.However,the stability of the SAM molecules,the stability of the molecular anchoring conformation,and the impact on the stability of subsequent PSCs have not been clearly elucidated.In this review,we systematically discussed the intrinsic connection between the molecular conformation(including anchoring groups,spacer groups,and terminal groups)and the stability of SAMs.Sequentially,the research progress of SAMs as HSLs in improving the stability of PSCs is summarized,including photostability,thermal stability,ion migration,and residual stress.Finally,we look forward to the shortcomings and possible challenges of using SAMs as HSLs for inverted PSCs.
基金financial support provided by the Sichuan Science and Technology Program(No.2022NSFSC0226)Sichuan Science and Technology Program(No.2023ZYD0163)+6 种基金the Production-Education Integration Demonstration Project of Sichuan Provincethe Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province(Sichuan Financial Education[2022]No.106)China Tianfu Yongxing Laboratory Science and Technology Key Project(2023KJGG15)National Key Research and Development Program of China(2022YFB3803300)Beijing Natural Science Foundation(IS23037)the Department for Energy Security and Net Zero(project ID:NEXTCCUS)the ACT program(Accelerating CCS Technologies,Horizon2020 project NO.691712)。
文摘The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.
基金financial support of National Key Research and Development Program of China(Grant No.2022YFB04200302)joint funds of National Natural Science Foundation of China(Grant No.62104115)+5 种基金National Natural Science Foundation of China(Grant No.U21A2072)Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Key R&D Program of Hebei Province(No.19214301D)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(No.202302A0370009)Haihe Laboratory of Sustainable Chemical TransformationsFundamental Research Funds for the Central Universities,Nankai University。
文摘The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices.
基金supported by the National Natural Science Foundation of China under Grant Nos.12275078,11875026,12035005,2020YFC2201400the innovative research group of Hunan Province under Grant No.2024JJ1006。
文摘We use out-of-time order correlators(OTOCs)to investigate the quantum instability and Ehrenfest time for an inverted harmonic oscillator(IHO).For initial states located in the stable manifolds of the IHO we find that the corresponding OTOC exhibits identical evolutionary characteristics to the saddle point before the Ehrenfest time.For initial states located in the unstable manifolds,the OTOCs still grow exponentially but the time to maintain exponential growth is related to the center position of its wave packet in phase space.Moreover,we use the Husimi Q function to visualize the quantum wave packets during exponential growth of the OTOCs.Our results show that quantum instability exists at arbitrary orbits in the IHO system,and the Ehrenfest time in the IHO system depends not only on the photon number of the initial system but also on the central positions of the initial states in phase space.
基金supported by the Young Cross Team Project of CAS(No.JCTD-2021-14)the National Natural Science Foundation of China(51925206)Gusu Innovation and Entrepreneur Leading Talents(ZXL2022466)。
文摘Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indium tin oxide(ITO)surface and the desorption of hydroxyl(OH)from the ITO surface induced by polar solvents can lead to the formation of vacancies.Herein,a dimethylacridine-based SAM is incorporated into the perovskite precursor solution.This SAM can be extruded from the precursor solution and enriched on the bottom surface of the perovskite,filling the vacancies and in situ forming a mixed SAM with MeO-2PACz as a hole-selective layer(HSL).The in situ formed mixed SAM optimizes the energy level alignment between the HSL and the perovskite,facilitating hole extraction and alleviating the residual strain of the perovskite film.Consequently,the perovskite solar cells(PSCs),based on the mixed SAM,achieve a power conversion efficiency(PCE)of 25.69%and exhibit excellent operational stability.When this approach is applied to 1.78 eV bandgap PSC devices,it yields a PCE of 20.08%.This work presents a unique strategy for fabricating both high-quality perovskite films and superior buried interfaces,which is also applicable to wide-bandgap PSCs.
基金supported by the National Natural Science Foundation of China under grant number 52179113Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering Safety Grant No.SKLGME 022022,SKLGME-JBGS2401.
文摘Support and maintenance of tunnel excavations during operation are critical to ensure the safety and stability of tunnels.This study proposes a specialized support technology for a railroad tunnel in western China,characterized by substantial deformation and a limited inherent self-stabilizing capacity.The method involves the application of a foam concrete compressible layer at the inverted arch of the tunnel.The effectiveness of the foam concrete layer in mitigating the effect of the surrounding rock on the tunnel inverted arch structure is investigated by a combination of indoor tests and numerical simulations.The laboratory test results show that the train load has little effect on the compressive performance of the foamed concrete compressible layer,which indicates that the foamed concrete compressible layer can be applied in the tunnel invert.By analyzing the support effect of the established model,it is found that the foam concrete compressible layer can effectively absorb the deformation pressure generated by the surrounding rock and protect the secondary lining structure,when the compressible layer density is 500 kg/m^(3) and the thickness is set to 20 cm,the supporting effect is the best.
基金supported by the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.GJHZ20220913143204008)the Shccig-Qinling Program(No.SMYJY202300294C)+3 种基金National Natural Science Foundation of China(Nos.22261142666,52372225,52172237,22305191)the Shaanxi Science Fund for Distinguished Young Scholars(No.2022JC-21)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)China(No.2021-QZ-02).
文摘The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.
基金supported by the National Natural Science Foundation of China(Grant No.51977046)Wuxi University Research Start-up Fund for Introduced Talent(2022r021).
文摘The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.
文摘In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.
基金supported by the National Natural Science Foundation of China(No.52474435)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202307).
文摘Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.
基金supported by National Natural Science Foundation of China(Grant Nos.12202547,62461160259)Shaanxi Province Qingchuangyuan“Scientist and Engineering”Team Construction Project(Grant Nos.2022KXJ-102,2022KXJ-106)+1 种基金Fundamental Research Funds for the Central UniversitiesProgram for Innovation Team of Shaanxi Province(Grant No.2023-CX-TD-17).
文摘Variable material screw-based material extrusion(S-MEX)3D printing technology provides a novel approach for fabricating composites with continuous material gradients.Nevertheless,achieving precise alignment between the process parameters and material compositions is challenging because of fluctuations in the melt rheological state caused by material variations.In this study,an invertible extrusion prediction model for 0-40 wt% short carbon fiber reinforced polyether-ether-ketone(SCF/PEEK)in the S-MEX process was established using an invertible neural network(INN)that demonstrated the capabilities of forward flow rate prediction and inverse process optimization with accuracies of 0.852 and 0.877,respectively.Moreover,a strategy for adjusting the screw speeds using process parameters obtained from the INN was developed to maintain a consistent flow rate during the variable material printing process.Benefiting from uniform flow,the linewidth accuracy was improved by 77%,and the surface roughness was reduced by 51%.Adjusting the process parameters by using an INN offers significant potential for flow rate control and the enhancement of the overall performance of variable material 3D printing.
基金supported in part by the National Natural Science Foundation of China(Nos.62202234,62401270)the China Postdoctoral Science Foundation(No.2023M741778)the Natural Science Foundation of Jiangsu Province(Nos.BK20240706,BK20240694).
文摘Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction.Therefore,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping rule.Firstly,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,respectively.Then,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute features.This noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference image.Additionally,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed model.Experimental results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden information.Furthermore,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.
基金supported by the National Key R&D Program of China(2022YFE0118400)the National Natural Science Foundation of China(6217520)+1 种基金the Science and Technology Project of Fujian Province of China(2021H6018)the Natural Science Foundation of Fujian Province of China(2021J06009)。
文摘Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant external stress,such as being kept at a convex bending state,imposing external stress on the brittle perovskite films and causing the fPSCs long-term stability problems.Overcoming these issues is vital.Herein,we propose an effective way to enhance the stability of the fPSCs under convex bending by modulating the residual stress of perovskite film for the first time.Specifically,we have carefully designed a synergistic strain engineering to toughen the perovskite films by introducing 1-butyl-3-methylimidazolium tetrafluoroborate,citric acid,and a novel cross-linker,5-(1,2-dithiolan-3-yl)pentanoate into perovskite films simultaneously.Besides passivating the perovskite films,the multiple additives effectively convert the residual stress within the perovskite films from tensile to compressive type to alleviate the detrimental impact of bending on the flexible perovskite films.As a result,the optimal efficiencies of triple-additive modified fPSCs have achieved 22.19%(0.06 cm^(2))and 19.44%(1.02 cm^(2)).More importantly,the strategy could significantly improve the stability of the perovskite films and fPSCs at a convex bending state.Our approach is inductive for the future practical field applications of high-performance fPSCs.