The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is ...The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network(ANN)inverse system and the two degrees of freedom(2-DOF) internal model controller(IMC). The HS-BLDC motor is identified by the online least squares support vector machine(OLS-SVM) algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.展开更多
Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to ma...Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to maneuver,and also dependent on their operational environment. To confront these problems and to design an effective controller,the inverse system method was used to decouple the original system into two independent single variable linear subsystems. The stability of the zero dynamics was analyzed,and an additional closed-loop controller for each linear subsystem was designed by sliding mode control method to form a type of composite controller. Simulation results demonstrate that the derived nonlinear controller is able to cope with the aforementioned problems simultaneously and satisfactorily.展开更多
In accordance with the characteristics of two motors system, the unitedmathematic model of two-motors inverter system with v/f variable frequency speed-regulating isgiven. Two-motor inverter system can be decoupled by...In accordance with the characteristics of two motors system, the unitedmathematic model of two-motors inverter system with v/f variable frequency speed-regulating isgiven. Two-motor inverter system can be decoupled by the neural network invert system, and changedinto a sub-system of speed and a sub-system of tension. Multiple controllers are designed, and goodresults are obtained. Tie system has good static and dynamic performances and high anti-disturbanceof load.展开更多
Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws ...Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.展开更多
The invertible of the Large Air Dense Medium Fluidized Bed (ADMFB) were studied by introducing the concept of the inverse system theory of nonlinear systems. Then the ADMFB, which was a multivariable, nonlinear and co...The invertible of the Large Air Dense Medium Fluidized Bed (ADMFB) were studied by introducing the concept of the inverse system theory of nonlinear systems. Then the ADMFB, which was a multivariable, nonlinear and coupled strongly system, was decoupled into independent SISO pseudo-linear subsystems. Linear controllers were designed for each of subsystems based on linear systems theory. The practice output proves that this method improves the stability of the ADMFB obviously.展开更多
Disturbance compensation methods are widely used to design the robust controller.In order to achieve the robust parallel control,how to implement the disturbance compensation in parallel control laws is studied in thi...Disturbance compensation methods are widely used to design the robust controller.In order to achieve the robust parallel control,how to implement the disturbance compensation in parallel control laws is studied in this paper.First,the key points are the estimations of the total inputs via inverse systems and the application of system state derivatives.Then,the inverse system based parallel control(ISPC)method is proposed for the optimal control of nonlinear systems.The basic structure of the inverse system based parallel control method is explained and compared with the traditional parallel control methods.The adaptive dynamic programming(ADP)method based on an approximate value function is used to solve the parallel control law.Finally,numerical simulations demonstrate the feasibility of the inverse system based parallel control method.展开更多
Terahertz(THz)metamaterials,with their exceptional ability to precisely manipulate the phase,amplitude,polarization and orbital angular momentum(OAM)of electromagnetic waves,have demonstrated significant application p...Terahertz(THz)metamaterials,with their exceptional ability to precisely manipulate the phase,amplitude,polarization and orbital angular momentum(OAM)of electromagnetic waves,have demonstrated significant application potential across a wide range of fields.However,traditional design methodologies often rely on extensive parameter sweeps,making it challenging to address the increasingly complex and diverse application requirements.Recently,the integration of artificial intelligence(AI)techniques,particularly deep learning and optimization algorithms,has introduced new approaches for the design of THz metamaterials.This paper reviews the fundamental principles of THz metamaterials and their intelligent design methodologies,with a particular focus on the advancements in AI-driven inverse design of THz metamaterials.The AI-driven inverse design process allows for the creation of THz metamaterials with desired properties by working backward from the unit structures and array configurations of THz metamaterials,thereby accelerating the design process and reducing both computational resources and time.It examines the critical role of AI in improving both the functionality and design efficiency of THz metamaterials.Finally,we outline future research directions and technological challenges,with the goal of providing valuable insights and guidance for ongoing and future investigations.展开更多
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s...Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.展开更多
This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an a...This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
In this paper, a weighted least square support vector machine algorithm for identification is proposed based on the T-S model. The method adopts fuzzy c-means clustering to identify the structure. Based on clustering,...In this paper, a weighted least square support vector machine algorithm for identification is proposed based on the T-S model. The method adopts fuzzy c-means clustering to identify the structure. Based on clustering, the original input/output space is divided into several subspaces and submodels are identified by least square support vector machine (LS-SVM). Then, a regression model is constructed by combining these submodels with a weighted mechanism. Furthermore we adopt the method to identify a class of inverse systems with immeasurable state variables. In the process of identification, an allied inverse system is constructed to obtain enough information for modeling. Simulation experiments show that the proposed method can identify the nonlinear allied inverse system effectively and provides satisfactory accuracy and good generalization.展开更多
Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The cal...Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.展开更多
To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance comman...To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.展开更多
A multivariable inverse nonlinear control scheme is developed to decouple the strongly nonlinear double extraction steam turbo unit, improving the transient stability of the power and heating system. Computer simul...A multivariable inverse nonlinear control scheme is developed to decouple the strongly nonlinear double extraction steam turbo unit, improving the transient stability of the power and heating system. Computer simulation tests show that not only does the control scheme achieve satisfactory decoupling of the high and low pressure turbines and the electric power, remarkably improving the transient stability, but also the design is very intuitive and concise.展开更多
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse&q...This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.展开更多
This paper presents a practical and efficient design method for aircraft Mission Success Space(MSS)based on the entropy measurement(EM).First,fundamentals regarding MSS,Inverse Design(ID)and entropy are discussed.Then...This paper presents a practical and efficient design method for aircraft Mission Success Space(MSS)based on the entropy measurement(EM).First,fundamentals regarding MSS,Inverse Design(ID)and entropy are discussed.Then,two EM schemes of entropy-based ID and the whole MSS ID procedure are given to demonstrate alternative ways of entropy quantification and MSS design.After that,Genetic Algorithm(GA)is utilized as a search algorithm to find the optimal MSS design with the minimum objective,entropy,in each EM scheme.A simulation case of aircraft penetration mission is given for the method validation where the best aircraft MSS design is obtained by GA according to the minimum entropy.Results from two schemes are compared at the end.展开更多
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n...Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.展开更多
基金co-supported by the National Major Project for the Development and Application of Scientific Instrument Equipment of China (No. 2012YQ040235)
文摘The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network(ANN)inverse system and the two degrees of freedom(2-DOF) internal model controller(IMC). The HS-BLDC motor is identified by the online least squares support vector machine(OLS-SVM) algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.
基金the National Natural Science Foundation of China (No. 50979058)the Special Research Fund for the Doctoral Program of Higher Education (No. 20090073110012)
文摘Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to maneuver,and also dependent on their operational environment. To confront these problems and to design an effective controller,the inverse system method was used to decouple the original system into two independent single variable linear subsystems. The stability of the zero dynamics was analyzed,and an additional closed-loop controller for each linear subsystem was designed by sliding mode control method to form a type of composite controller. Simulation results demonstrate that the derived nonlinear controller is able to cope with the aforementioned problems simultaneously and satisfactorily.
文摘In accordance with the characteristics of two motors system, the unitedmathematic model of two-motors inverter system with v/f variable frequency speed-regulating isgiven. Two-motor inverter system can be decoupled by the neural network invert system, and changedinto a sub-system of speed and a sub-system of tension. Multiple controllers are designed, and goodresults are obtained. Tie system has good static and dynamic performances and high anti-disturbanceof load.
文摘Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.
文摘The invertible of the Large Air Dense Medium Fluidized Bed (ADMFB) were studied by introducing the concept of the inverse system theory of nonlinear systems. Then the ADMFB, which was a multivariable, nonlinear and coupled strongly system, was decoupled into independent SISO pseudo-linear subsystems. Linear controllers were designed for each of subsystems based on linear systems theory. The practice output proves that this method improves the stability of the ADMFB obviously.
文摘Disturbance compensation methods are widely used to design the robust controller.In order to achieve the robust parallel control,how to implement the disturbance compensation in parallel control laws is studied in this paper.First,the key points are the estimations of the total inputs via inverse systems and the application of system state derivatives.Then,the inverse system based parallel control(ISPC)method is proposed for the optimal control of nonlinear systems.The basic structure of the inverse system based parallel control method is explained and compared with the traditional parallel control methods.The adaptive dynamic programming(ADP)method based on an approximate value function is used to solve the parallel control law.Finally,numerical simulations demonstrate the feasibility of the inverse system based parallel control method.
基金supported by the National Key R and D Program of China(No.2022YFF0604801)the National Natural Science Foundation of China(Nos.62271056,62171186,62201037)+3 种基金the Technology Innovation Center of Infrared Remote Sensing Metrology Technology of State Administration for Market Regulation(No.AKYKF2423)the Beijing Natural Science Foundation of China-Haidian Original Innovation Joint Fund(No.L222042)the Open Research Fund of State Key Laboratory of Millimeter Waves(No.K202326)the 111 Project of China(No.B14010).
文摘Terahertz(THz)metamaterials,with their exceptional ability to precisely manipulate the phase,amplitude,polarization and orbital angular momentum(OAM)of electromagnetic waves,have demonstrated significant application potential across a wide range of fields.However,traditional design methodologies often rely on extensive parameter sweeps,making it challenging to address the increasingly complex and diverse application requirements.Recently,the integration of artificial intelligence(AI)techniques,particularly deep learning and optimization algorithms,has introduced new approaches for the design of THz metamaterials.This paper reviews the fundamental principles of THz metamaterials and their intelligent design methodologies,with a particular focus on the advancements in AI-driven inverse design of THz metamaterials.The AI-driven inverse design process allows for the creation of THz metamaterials with desired properties by working backward from the unit structures and array configurations of THz metamaterials,thereby accelerating the design process and reducing both computational resources and time.It examines the critical role of AI in improving both the functionality and design efficiency of THz metamaterials.Finally,we outline future research directions and technological challenges,with the goal of providing valuable insights and guidance for ongoing and future investigations.
基金The National Natural Science Foundation of China(62173172).
文摘Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.
基金supported by the National Natural Science Foundation of China under 62173172。
文摘This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金Supported by the National Natural Science Foundation of China (Grant No. 60874013)the Doctoral Project of the Ministry of Education of China (Grant No. 20070286001)
文摘In this paper, a weighted least square support vector machine algorithm for identification is proposed based on the T-S model. The method adopts fuzzy c-means clustering to identify the structure. Based on clustering, the original input/output space is divided into several subspaces and submodels are identified by least square support vector machine (LS-SVM). Then, a regression model is constructed by combining these submodels with a weighted mechanism. Furthermore we adopt the method to identify a class of inverse systems with immeasurable state variables. In the process of identification, an allied inverse system is constructed to obtain enough information for modeling. Simulation experiments show that the proposed method can identify the nonlinear allied inverse system effectively and provides satisfactory accuracy and good generalization.
基金This work was supported by the National Natural Science Foundation of China (No.51063006 and No.50975273) and the "QingLan" Talent Engineering Funds of Tianshui Normal University.
文摘Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.
文摘To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.
文摘A multivariable inverse nonlinear control scheme is developed to decouple the strongly nonlinear double extraction steam turbo unit, improving the transient stability of the power and heating system. Computer simulation tests show that not only does the control scheme achieve satisfactory decoupling of the high and low pressure turbines and the electric power, remarkably improving the transient stability, but also the design is very intuitive and concise.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
基金supported in part by the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Japan Society for the Promotion of Science(C18K04212)+2 种基金the Science and Technology Project of Jilin Province(20180201009SF,20170414011GH,20180201004SF,20180101069JC)the Fundamental Research Funds for the Central Universities(N2008002)“Xing Liao Ying Cai”Program(XLYC1907073)。
文摘This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.
文摘This paper presents a practical and efficient design method for aircraft Mission Success Space(MSS)based on the entropy measurement(EM).First,fundamentals regarding MSS,Inverse Design(ID)and entropy are discussed.Then,two EM schemes of entropy-based ID and the whole MSS ID procedure are given to demonstrate alternative ways of entropy quantification and MSS design.After that,Genetic Algorithm(GA)is utilized as a search algorithm to find the optimal MSS design with the minimum objective,entropy,in each EM scheme.A simulation case of aircraft penetration mission is given for the method validation where the best aircraft MSS design is obtained by GA according to the minimum entropy.Results from two schemes are compared at the end.
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金This work was supported by National Natural Science Foundation of China(No.60276037).
文摘Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.