How to utilize existing flow control mechanisms to make profiled end wall design more flexible,efficient,and physical is a meaningful challenge.This study presents a three-dimensional inverse method for profiled end w...How to utilize existing flow control mechanisms to make profiled end wall design more flexible,efficient,and physical is a meaningful challenge.This study presents a three-dimensional inverse method for profiled end wall design to achieve the application of flow control mechanisms.The predetermined pressure distribution on the end wall is reached by modifying the end wall geometry during flow field calculation.A motion velocity model is derived from the normal momentum equation of the moving no-slip boundary to modify the end wall geometry.A Reynolds-Averaged Navier-Stokes(RANS)solver based on the Semi-Implicit Method for Pressure Linked Equations(SIMPLE)algorithm is adopted to simulate the flow field.Based on the mechanism understanding obtained through numerical optimization results,this study adopts the inverse method to redesign an optimized end wall in a compressor cascade.The results indicate that the redesigned end wall exhibits better loss reduction,reducing the overall total pressure loss by 5.5%,whereas the optimized end wall reduces it by 3%.The inverse method allows the imposition of desired influences on the end wall flow without constructing a database,making it highly flexible,efficient,and physical.展开更多
The reliable estimation of the wavenumber space(k-space)of the plates remains a longterm concern for acoustic modeling and structural dynamic behavior characterization.Most current analyses of wavenumber identificatio...The reliable estimation of the wavenumber space(k-space)of the plates remains a longterm concern for acoustic modeling and structural dynamic behavior characterization.Most current analyses of wavenumber identification methods are based on the deterministic hypothesis.To this end,an inverse method is proposed for identifying wave propagation characteristics of twodimensional structures under stochastic conditions,such as wavenumber space,dispersion curves,and band gaps.The proposed method is developed based on an algebraic identification scheme in the polar coordinate system framework,thus named Algebraic K-Space Identification(AKSI)technique.Additionally,a model order estimation strategy and a wavenumber filter are proposed to ensure that AKSI is successfully applied.The main benefit of AKSI is that it is a reliable and fast method under four stochastic conditions:(A)High level of signal noise;(B)Small perturbation caused by uncertainties in measurement points’coordinates;(C)Non-periodic sampling;(D)Unknown structural periodicity.To validate the proposed method,we numerically benchmark AKSI and three other inverse methods to extract dispersion curves on three plates under stochastic conditions.One experiment is then performed on an isotropic steel plate.These investigations demonstrate that AKSI is a good in-situ k-space estimator under stochastic conditions.展开更多
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade sha...To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade shape is parameterized by quartic Bezier curve, and the initial snapshots is generated by introducing the perturbation of the blade shape control parameters. The internal flow field and its hydraulic performance is predicted by CFD method. The snapshots vector includes the blade shape parameter and the distribution of blade load. The POD basis for the snap- shots set are deduced by proper orthogonal decomposition. The sample vector set is expressed in terms of the linear combination of the orthogonal basis. The objective blade shape corresponding to the objective distribution of blade load is obtained by least square fit. The Iterative correction algorithm for the centrifugal pump blade inverse method based on POD is proposed. The objective blade load dis- tributions are corrected according to the difference of the CFD result and the POD result. The two dimensional and three dimensional blade calculation cases show that the proposed centrifugal pump blade inverse method based on POD have good convergence and high accuracy, and thecalculation cost is greatly reduced. After two iterations, the deviation of the blade load and the pump hydraulic perfor- mance are limited within 4.0% and 6.0% individually for most of the flow rate range. This paper provides a promising inverse method for centrifugal pump impeller, which will benefit the hydraulic optimization of centrifugal pump.展开更多
Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHT...Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHTC) between the surface of slab casting and inner mold. Calculated temperature dependent values of IHTC were obtained from a numerical solution. The calculated temperatures agreed well with the measurement of cooling profile.展开更多
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For stu...On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results have been obtained. (1) The central and southwestern SCSs are dominated mainly by anticy-clonic circulation systems. They are mainly as follows. 1) There is strong anticyclonic eddy southeast of Vietnam (W1). Its horizontal scale is about 300 km, and it extends vertically from the surface to the about 1 000 m level. 2) There are a warm eddy W2 southeast of Zhongsha Islands and the anticyclonic circulation system W3 west off the Luzon Island. 3) There is a stronger cyclonic eddy C1 between the anticyclonic eddies W1 and W2.4) A strong northward coastal jet is present near the coast of Vietnam, and separates from the coast of Vietnam at about 12° N to the northeast.(2)The northern SCS is dominated mainly by a cyclonic circulation system. There is a cyclonic circulation system near and north of Section N2. (3) The southeastern SCS is dominated mainly by the cyclonic circulation system. (4) Comparing the results of circulation in the SCS during the summer of 2000 with those during the summer of 1998, it is found that they agree qualitatively, but there is the some difference between them in quantity.This shows that the circulation in the SCS has obviously seasonal feature. (5) The dynamical mechanism which products the basic pattern of summer circulation is because the following two reasons: 1) the joint effect of the baroclinity and relief (JEBAR) is essential dynamical cause; and 2) it is next important dynamical cause that the interaction between the wind stress and bottom topography under the southerly monsoon. (6) Comparing the hydrographic structure and distribution of stream functions with the SSH data from TOPEX/ERS-2 analysis in the SCS during August of 2000, they agree qualitatively.展开更多
Two strategies extended the single-cascade methods from a compressible three-dimensional inverse method for radial and mixed flow turbomachines to two three-dimensional multi-cascade co-design methods for single-stage...Two strategies extended the single-cascade methods from a compressible three-dimensional inverse method for radial and mixed flow turbomachines to two three-dimensional multi-cascade co-design methods for single-stage centrifugal compressors.These two three-dimensional methods and a typical quasi-threedimensional streamline curvature through-flow inverse method were employed to design the same subsonic high-speed single-stage centrifugal compressors.The compressor performances were simulated by a commercial Reynolds averaged Navier-Stokes(RANS) equations solver.The studies show that two three-dimensional codesign methods are reasonable and feasible.It was found that : firstly the blade camber angle designed by the three-dimensional methods was larger than that designed by the quasi-three-dimensional method;and secondly with regard to two three-dimensional methods with different boundary conditions,the co-design result differences between the diffusers were small,but those between the deswirlers were relatively large.展开更多
One can compute the final deformation of a known geometry under specific boundary conditions using the constitutive laws of mechanics that describe their stress strain behavior.In such cases the initial geometry is kn...One can compute the final deformation of a known geometry under specific boundary conditions using the constitutive laws of mechanics that describe their stress strain behavior.In such cases the initial geometry is known,and all operators mapping the deformation are defined on the reference domain.However,there are situations in which the final configuration of a deformation might be known but not the initial.The inverse formulation allows one to determine the initial geometry of a domain,given its final deformation state,the material behavior law and a set of boundary conditions.In the present work we propose a method to reconstruct the mesoscale geometry of a textile based on its mechanical response during compaction.To do so,stress boundary conditions are acquired by means of a pressuresensitive film.By adopting an appropriate material law,the thickness and width information of the yarns are deduced from the pressure field experienced by the compacted textile.Unlike 3 D scanning techniques such as-CT,the proposed method can be applied on any domain size,allowing long-range variability to be captured.To the best of the authors’knowledge,there are no previous works that use a pressure-sensitive film on a large domain to capture the input data for a shape reconstruction.This example application serves as a demonstration of a methodology which could be applied to other classes of materials.展开更多
A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature dur...A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold; while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m-2·K-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32 °C and 18.77 °C for castings by inorganic and organic sand molds.展开更多
A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first ...A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.展开更多
Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertic...Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertical temperature diffusion coefficient based on the observed temperature profiles. The sensitivity of the inverse model in the idealized and actual conditions is tested in detail. It can be found that this inverse model has high feasibility under multiple situations ensuring the stability of the inverse model, and can be considered as an efficient way to estimate the temperature diffusion coefficient in the weak current regions of the ocean. Here, the hydrographic profiles from Argo floats are used to estimate the temporal and spatial distribution of the vertical mixing in the north central Pacific based on this inverse method. It is further found that the vertical mixing in the upper ocean displays a distinct seasonal variation with the amplitude decreasing with depth, and the vertical mixing over rough topography is stronger than that over smooth topography It is suggested that the high-resolution profiles from Argo floats and a more reasonable design of the inverse scheme will serve to understand mixing processes.展开更多
A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming pro...A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming process of a flower-shaped box using the membrane element model with and without this modification. The numerical results are compared with those of the incremental method to verify the validity of the element model developed in this paper.展开更多
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in...The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods rema...Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods remains challenging,as it requires the estimation of more than eight parameters.Assuming the reservoir to be a weakly anisotropic ORT medium with small contrasts in the background elastic parameters,a new azimuthal elastic impedance equation was first derived using parameter combinations and mathematical approximations.This equation exhibited almost the same accuracy as the original equation and contained only six model parameters:the compression modulus,anisotropic shear modulus,anisotropic compression modulus,density,normal fracture weakness,and tangential fracture weakness.Subsequently,a stepwise inversion method using second-order derivatives of the elastic impedance was developed to estimate these parameters.Moreover,the Thomsen anisotropy parameter,epsilon,was estimated from the inversion results using the ratio of the anisotropic compression modulus to the compression modulus.Synthetic examples with moderate noise and field data examples confirm the feasibility and effectiveness of the inversion method.The proposed method exhibited accuracy similar to that of previous inversion strategies and could predict richer vertical fracture information.Ultimately,the method was applied to a three-dimensional work area,and the predictions were consistent with logging and geological a priori information,confirming the effectiveness of this method.Summarily,the proposed stepwise inversion method can alleviate the uncertainty of multi-parameter inversion in ORT medium,thereby improving the reliability of fracture detection.展开更多
Transient outflow experiments coupling with an inverse method are promisingto derive soil hydraulic information. The water retention curves obtained from one-step andmulti-step outflow experiments were compared with t...Transient outflow experiments coupling with an inverse method are promisingto derive soil hydraulic information. The water retention curves obtained from one-step andmulti-step outflow experiments were compared with those from the pressure cell method. We found thatin one-step experiments the increment of pressure would reduce the non-uniqueness of inversetechnique and that in multi-step experiment the combination of cumulative outflow with pressure headin the objective function would improve the final estimation and also reduce the non-uniqueness ofinverse problem.展开更多
A two-dimensional inviscid inverse method is developed,verified and applied inthis paper.The method solves the Euler equation in absolute reference frame by a cell-centeredfinite volume method,and the hybrid Runge-Kut...A two-dimensional inviscid inverse method is developed,verified and applied inthis paper.The method solves the Euler equation in absolute reference frame by a cell-centeredfinite volume method,and the hybrid Runge-Kutta method ls used for time integration.Different from the direct method,the inverse method imposes a unique"transpiration"boundary condition on the blade surfaces.The inputs of inverse method are pressure loadingand blade tangential thickness distribution along the blade chord.During the time marchingprocess,the blade shape is periodically updated.When the solution is converged,the bladeshape will be stabled.In the paper,the principle of the inverse method is described in detail.Then the developed inverse method is verified against a consistence test:recover an axialcompressor cascade from a different start.Finally,to demonstrate the powerful capability ofthe method,it is used to redesign the cascade,and final results give an improved aerodynamicperformance.展开更多
The smoothed particle hydrodynamics(SPH) method is usually expected to be an efficient numerical tool for calculating the fluid-structure interactions in compressors; however, an endogenetic restriction is the probl...The smoothed particle hydrodynamics(SPH) method is usually expected to be an efficient numerical tool for calculating the fluid-structure interactions in compressors; however, an endogenetic restriction is the problem of low-order consistency. A high-order SPH method by introducing inverse kernels, which is quite easy to be implemented but efficient, is proposed for solving this restriction. The basic inverse method and the special treatment near boundary are introduced with also the discussion of the combination of the Least-Square(LS) and Moving-Least-Square(MLS) methods. Then detailed analysis in spectral space is presented for people to better understand this method. Finally we show three test examples to verify the method behavior.展开更多
基金Supported by the National Natural Science Foundation of China(No.52376021).
文摘How to utilize existing flow control mechanisms to make profiled end wall design more flexible,efficient,and physical is a meaningful challenge.This study presents a three-dimensional inverse method for profiled end wall design to achieve the application of flow control mechanisms.The predetermined pressure distribution on the end wall is reached by modifying the end wall geometry during flow field calculation.A motion velocity model is derived from the normal momentum equation of the moving no-slip boundary to modify the end wall geometry.A Reynolds-Averaged Navier-Stokes(RANS)solver based on the Semi-Implicit Method for Pressure Linked Equations(SIMPLE)algorithm is adopted to simulate the flow field.Based on the mechanism understanding obtained through numerical optimization results,this study adopts the inverse method to redesign an optimized end wall in a compressor cascade.The results indicate that the redesigned end wall exhibits better loss reduction,reducing the overall total pressure loss by 5.5%,whereas the optimized end wall reduces it by 3%.The inverse method allows the imposition of desired influences on the end wall flow without constructing a database,making it highly flexible,efficient,and physical.
基金supported by the Lyon Acoustics Center of Lyon University,Francefunded by the China Scholarship Council(CSC)。
文摘The reliable estimation of the wavenumber space(k-space)of the plates remains a longterm concern for acoustic modeling and structural dynamic behavior characterization.Most current analyses of wavenumber identification methods are based on the deterministic hypothesis.To this end,an inverse method is proposed for identifying wave propagation characteristics of twodimensional structures under stochastic conditions,such as wavenumber space,dispersion curves,and band gaps.The proposed method is developed based on an algebraic identification scheme in the polar coordinate system framework,thus named Algebraic K-Space Identification(AKSI)technique.Additionally,a model order estimation strategy and a wavenumber filter are proposed to ensure that AKSI is successfully applied.The main benefit of AKSI is that it is a reliable and fast method under four stochastic conditions:(A)High level of signal noise;(B)Small perturbation caused by uncertainties in measurement points’coordinates;(C)Non-periodic sampling;(D)Unknown structural periodicity.To validate the proposed method,we numerically benchmark AKSI and three other inverse methods to extract dispersion curves on three plates under stochastic conditions.One experiment is then performed on an isotropic steel plate.These investigations demonstrate that AKSI is a good in-situ k-space estimator under stochastic conditions.
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
基金Supported by National Natural Science Foundation of China(Grant Nos.51469014,51676003)National Key Research and Development Program of China(Grant No.20016YFB0200901)
文摘To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade shape is parameterized by quartic Bezier curve, and the initial snapshots is generated by introducing the perturbation of the blade shape control parameters. The internal flow field and its hydraulic performance is predicted by CFD method. The snapshots vector includes the blade shape parameter and the distribution of blade load. The POD basis for the snap- shots set are deduced by proper orthogonal decomposition. The sample vector set is expressed in terms of the linear combination of the orthogonal basis. The objective blade shape corresponding to the objective distribution of blade load is obtained by least square fit. The Iterative correction algorithm for the centrifugal pump blade inverse method based on POD is proposed. The objective blade load dis- tributions are corrected according to the difference of the CFD result and the POD result. The two dimensional and three dimensional blade calculation cases show that the proposed centrifugal pump blade inverse method based on POD have good convergence and high accuracy, and thecalculation cost is greatly reduced. After two iterations, the deviation of the blade load and the pump hydraulic perfor- mance are limited within 4.0% and 6.0% individually for most of the flow rate range. This paper provides a promising inverse method for centrifugal pump impeller, which will benefit the hydraulic optimization of centrifugal pump.
基金supported by National Basic Research Program of China(No.2005CB724105)National Natural Science Foundation of China (No.10477010)National High Technical Research and Development Program of China(No.2007AA04Z141)
文摘Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHTC) between the surface of slab casting and inner mold. Calculated temperature dependent values of IHTC were obtained from a numerical solution. The calculated temperatures agreed well with the measurement of cooling profile.
基金the Major State Basic Research Program of China un der contract No.G1999043805.
文摘On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results have been obtained. (1) The central and southwestern SCSs are dominated mainly by anticy-clonic circulation systems. They are mainly as follows. 1) There is strong anticyclonic eddy southeast of Vietnam (W1). Its horizontal scale is about 300 km, and it extends vertically from the surface to the about 1 000 m level. 2) There are a warm eddy W2 southeast of Zhongsha Islands and the anticyclonic circulation system W3 west off the Luzon Island. 3) There is a stronger cyclonic eddy C1 between the anticyclonic eddies W1 and W2.4) A strong northward coastal jet is present near the coast of Vietnam, and separates from the coast of Vietnam at about 12° N to the northeast.(2)The northern SCS is dominated mainly by a cyclonic circulation system. There is a cyclonic circulation system near and north of Section N2. (3) The southeastern SCS is dominated mainly by the cyclonic circulation system. (4) Comparing the results of circulation in the SCS during the summer of 2000 with those during the summer of 1998, it is found that they agree qualitatively, but there is the some difference between them in quantity.This shows that the circulation in the SCS has obviously seasonal feature. (5) The dynamical mechanism which products the basic pattern of summer circulation is because the following two reasons: 1) the joint effect of the baroclinity and relief (JEBAR) is essential dynamical cause; and 2) it is next important dynamical cause that the interaction between the wind stress and bottom topography under the southerly monsoon. (6) Comparing the hydrographic structure and distribution of stream functions with the SSH data from TOPEX/ERS-2 analysis in the SCS during August of 2000, they agree qualitatively.
基金Programme of Introducing Talents of Discipline to Universities(B08009)
文摘Two strategies extended the single-cascade methods from a compressible three-dimensional inverse method for radial and mixed flow turbomachines to two three-dimensional multi-cascade co-design methods for single-stage centrifugal compressors.These two three-dimensional methods and a typical quasi-threedimensional streamline curvature through-flow inverse method were employed to design the same subsonic high-speed single-stage centrifugal compressors.The compressor performances were simulated by a commercial Reynolds averaged Navier-Stokes(RANS) equations solver.The studies show that two three-dimensional codesign methods are reasonable and feasible.It was found that : firstly the blade camber angle designed by the three-dimensional methods was larger than that designed by the quasi-three-dimensional method;and secondly with regard to two three-dimensional methods with different boundary conditions,the co-design result differences between the diffusers were small,but those between the deswirlers were relatively large.
基金partially funded by Conseil Regional Pays de la Loire(grant number TEU29)。
文摘One can compute the final deformation of a known geometry under specific boundary conditions using the constitutive laws of mechanics that describe their stress strain behavior.In such cases the initial geometry is known,and all operators mapping the deformation are defined on the reference domain.However,there are situations in which the final configuration of a deformation might be known but not the initial.The inverse formulation allows one to determine the initial geometry of a domain,given its final deformation state,the material behavior law and a set of boundary conditions.In the present work we propose a method to reconstruct the mesoscale geometry of a textile based on its mechanical response during compaction.To do so,stress boundary conditions are acquired by means of a pressuresensitive film.By adopting an appropriate material law,the thickness and width information of the yarns are deduced from the pressure field experienced by the compacted textile.Unlike 3 D scanning techniques such as-CT,the proposed method can be applied on any domain size,allowing long-range variability to be captured.To the best of the authors’knowledge,there are no previous works that use a pressure-sensitive film on a large domain to capture the input data for a shape reconstruction.This example application serves as a demonstration of a methodology which could be applied to other classes of materials.
文摘A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold; while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m-2·K-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32 °C and 18.77 °C for castings by inorganic and organic sand molds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51876010 and 51676019).
文摘A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.
基金The Program for New Century Excellent Talents in University of the Ministry of Education under contract No.NCET-10-0764the National High Technology Research and Development Program of China(863 Program)under contract No.2013AA09A502the National Natural Science Foundation of China under contract Nos 40876015 and 41176010
文摘Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertical temperature diffusion coefficient based on the observed temperature profiles. The sensitivity of the inverse model in the idealized and actual conditions is tested in detail. It can be found that this inverse model has high feasibility under multiple situations ensuring the stability of the inverse model, and can be considered as an efficient way to estimate the temperature diffusion coefficient in the weak current regions of the ocean. Here, the hydrographic profiles from Argo floats are used to estimate the temporal and spatial distribution of the vertical mixing in the north central Pacific based on this inverse method. It is further found that the vertical mixing in the upper ocean displays a distinct seasonal variation with the amplitude decreasing with depth, and the vertical mixing over rough topography is stronger than that over smooth topography It is suggested that the high-resolution profiles from Argo floats and a more reasonable design of the inverse scheme will serve to understand mixing processes.
基金Project supported by the National Natural Science Foundation of China (No. 51075187)
文摘A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming process of a flower-shaped box using the membrane element model with and without this modification. The numerical results are compared with those of the incremental method to verify the validity of the element model developed in this paper.
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金funded by Vice Chancellor of Research at Shiraz University(grant 3GFU2M1820).
文摘The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.
基金supported by the National Key Research and Development Project (No. 2022YFA1602301)the National Natural Science Foundation of China (Nos. U2267205, 12275361, 12125509, 12222514, 11961141003, and 12005304)+2 种基金the CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholarsthe Continuous-Support Basic Scientific Research Project
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金sponsorship of the National Natural Science Foundation of China(42430809,42274157,42030103,42404132)the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(SKLDOG2024-ZYTS-02)+5 种基金the Postdoctoral Fellowship Program of CPSF(GZB20240850)the Postdoctoral Project of Qingdao(QDBSH20240102082)the Fundamental Research Funds for the Central Universities(24CX07004A,24CX06036A)the CNPC Innovation Fund(2024DQ02-0505,2024DQ02-0136)the Innovation fund project for graduate student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities(24CX04002A).
文摘Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods remains challenging,as it requires the estimation of more than eight parameters.Assuming the reservoir to be a weakly anisotropic ORT medium with small contrasts in the background elastic parameters,a new azimuthal elastic impedance equation was first derived using parameter combinations and mathematical approximations.This equation exhibited almost the same accuracy as the original equation and contained only six model parameters:the compression modulus,anisotropic shear modulus,anisotropic compression modulus,density,normal fracture weakness,and tangential fracture weakness.Subsequently,a stepwise inversion method using second-order derivatives of the elastic impedance was developed to estimate these parameters.Moreover,the Thomsen anisotropy parameter,epsilon,was estimated from the inversion results using the ratio of the anisotropic compression modulus to the compression modulus.Synthetic examples with moderate noise and field data examples confirm the feasibility and effectiveness of the inversion method.The proposed method exhibited accuracy similar to that of previous inversion strategies and could predict richer vertical fracture information.Ultimately,the method was applied to a three-dimensional work area,and the predictions were consistent with logging and geological a priori information,confirming the effectiveness of this method.Summarily,the proposed stepwise inversion method can alleviate the uncertainty of multi-parameter inversion in ORT medium,thereby improving the reliability of fracture detection.
文摘Transient outflow experiments coupling with an inverse method are promisingto derive soil hydraulic information. The water retention curves obtained from one-step andmulti-step outflow experiments were compared with those from the pressure cell method. We found thatin one-step experiments the increment of pressure would reduce the non-uniqueness of inversetechnique and that in multi-step experiment the combination of cumulative outflow with pressure headin the objective function would improve the final estimation and also reduce the non-uniqueness ofinverse problem.
基金the support of National Science Foundation of China(Grant No.51076131)for supporting the present research.
文摘A two-dimensional inviscid inverse method is developed,verified and applied inthis paper.The method solves the Euler equation in absolute reference frame by a cell-centeredfinite volume method,and the hybrid Runge-Kutta method ls used for time integration.Different from the direct method,the inverse method imposes a unique"transpiration"boundary condition on the blade surfaces.The inputs of inverse method are pressure loadingand blade tangential thickness distribution along the blade chord.During the time marchingprocess,the blade shape is periodically updated.When the solution is converged,the bladeshape will be stabled.In the paper,the principle of the inverse method is described in detail.Then the developed inverse method is verified against a consistence test:recover an axialcompressor cascade from a different start.Finally,to demonstrate the powerful capability ofthe method,it is used to redesign the cascade,and final results give an improved aerodynamicperformance.
基金funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement 225967 ‘‘Next Mu SE”supported by the National Natural Science Foundation of China (Nos. 11202013, 11572025 and 51420105008)
文摘The smoothed particle hydrodynamics(SPH) method is usually expected to be an efficient numerical tool for calculating the fluid-structure interactions in compressors; however, an endogenetic restriction is the problem of low-order consistency. A high-order SPH method by introducing inverse kernels, which is quite easy to be implemented but efficient, is proposed for solving this restriction. The basic inverse method and the special treatment near boundary are introduced with also the discussion of the combination of the Least-Square(LS) and Moving-Least-Square(MLS) methods. Then detailed analysis in spectral space is presented for people to better understand this method. Finally we show three test examples to verify the method behavior.