期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Inverse Dynamics of Delta Robot Based on the Principle of Virtual Work 被引量:5
1
作者 赵永杰 杨志永 黄田 《Transactions of Tianjin University》 EI CAS 2005年第4期268-273,共6页
A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is ... A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is obtained so the three types kinematics singularities namely inverse, direct and combined types, can be identified with the physical meaning.Then based on the principle of virtual work, a methodology for driving the dynamical equations of motion is developed.Meanwhile the whole actuating torques, the torques caused by the gravity, the velocity and the acceleration are computed respectively in the numerical example. Results show that torque caused by the acceleration term is much bigger than the other two terms.This approach leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure when the principle of virtual work is applied to solving the inverse dynamical problem. 展开更多
关键词 Jacobi matrix: parallel robot inverse dynamics principle of virtual work
在线阅读 下载PDF
Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control 被引量:15
2
作者 Zhang Yu Chen Jing Shen Lincheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1038-1056,共19页
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits... This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. 展开更多
关键词 Air-to-surface attack Direct method inverse dynamics Motion planning Real time control Receding horizon control Trajectory planning Unmanned combat aerial vehicles
原文传递
Minimum Time Overtaking Problem of Vehicle Handling Inverse Dynamics Based on Two Kinds of Safe Distances 被引量:1
3
作者 You-Qun Zhao Xing-Long Zhang +1 位作者 Wen-Xin Zhang Fen Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期207-216,共10页
Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud?ies on overtaking safety have neglected research into driver control input. A novel method is proposed to o... Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud?ies on overtaking safety have neglected research into driver control input. A novel method is proposed to obtain the driver control input during the overtaking process. Meanwhile, to improve the safety of overtaking, two types of safe distances, and the time of the overtaking are considered. Path constraints are established when considering the two types of safe distances. An optimal control model is established to solve the minimum time maneuver under multiple constraints. Using the Gauss pseudospectral method, the optimal control problem is converted into a nonlinear pro?gramming problem, which is then solved through sequential quadratic programming(SQP). In addition, the e ective?ness of the proposed method is verified based on the results of a Carsim simulation. The simulation results show that by adopting an inverse dynamics method to solve the manipulation problem of the vehicle’s minimum overtaking time, the manipulation capability of a vehicle in completing an overtaking safely within the minimum time can be obtained. This method can provide a reference for research into the active safety of manned and unmanned vehicles. 展开更多
关键词 Handling inverse dynamics Safe distance OVERTAKING Optimal control Simulation
在线阅读 下载PDF
Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse Dynamics
4
作者 Xin Yu Na Duan 《International Journal of Automation and computing》 EI 2009年第4期391-394,共4页
This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic... This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law. 展开更多
关键词 Output feedback stochastic input-to-state stability (SISS) stochastic integral input-to-state stability (SilSS) stochastic inverse dynamic stochastic nonlinear systems.
在线阅读 下载PDF
Analysis and Inverse Substructuring Computation on Dynamic Quality of Mechanical Assembly 被引量:3
5
作者 Lü Guangqing YI Chuijie FANG Ke 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期539-548,共10页
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio... Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness. 展开更多
关键词 mechanical assembly dynamic quality substructuring analysis inverse substructuring assembly-coupling dynamic stiffness
在线阅读 下载PDF
Dynamic inverse control of feedback linearization in ballistic correction based on nose cone swinging
6
作者 秦华伟 王华 《Journal of Central South University》 SCIE EI CAS 2013年第9期2447-2453,共7页
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ... It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved. 展开更多
关键词 nose cone swinging two-dimensional ballistic correction feedback linearization dynamic inverse control three-time-scale separation method
在线阅读 下载PDF
Position Control of Flexible Joint Carts Using Adaptive Generalized Dynamics Inversion
7
作者 Ibrahim M.Mehedi Mohd Heidir Mohd Shah +3 位作者 Soon Xin Ng Abdulah Jeza Aljohani Mohammed El-Hajjar Muhammad Moinuddin 《Computers, Materials & Continua》 SCIE EI 2022年第3期4691-4705,共15页
This paper presents the design and implementation of Adaptive Generalized Dynamic Inversion(AGDI)to track the position of a Linear Flexible Joint Cart(LFJC)system along with vibration suppression of the flexible joint... This paper presents the design and implementation of Adaptive Generalized Dynamic Inversion(AGDI)to track the position of a Linear Flexible Joint Cart(LFJC)system along with vibration suppression of the flexible joint.The proposed AGDI control law will be comprised of two control elements.The baseline(continuous)control law is based on principle of conventional GDI approach and is established by prescribing the constraint dynamics of controlled state variables that reflect the control objectives.The control law is realized by inverting the prescribed dynamics using dynamically scaledMoore-Penrose generalized inversion.To boost the robust attributes against system nonlinearities,parametric uncertainties and external perturbations,a discontinuous control law will be augmented which is based on the concept of sliding mode principle.In discontinuous control law,the sliding mode gain is made adaptive in order to achieve improved tracking performance and chattering reduction.The closed-loop stability of resultant control law is established by introducing a positive define Lyapunov candidate function such that semi-global asymptotic attitude tracking of LFJC system is guaranteed.Rigorous computer simulations followed by experimental investigation will be performed on Quanser’s LFJC system to authenticate the feasibility of proposed control approach for its application to real world problems. 展开更多
关键词 Adaptive control generalized dynamic inversion moore-penrose generalized inverse sliding mode control lyapunov stability semi-global asymptotic stability
在线阅读 下载PDF
NEURAL NETWORK REALIZATION OF STRUCTURAL VIBRATION CONTROL USING MR DAMPER
8
作者 周丽 张志成 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期144-150,共7页
Magnetorheological (MR) dampers are one of the most promising new devices for civil infrastructural vibration control applications. However, due to their highly nonlinear dynamic behavior, it is very difficult to obta... Magnetorheological (MR) dampers are one of the most promising new devices for civil infrastructural vibration control applications. However, due to their highly nonlinear dynamic behavior, it is very difficult to obtain of a mathematical model of inverse MR damper that has an explicit relationship between the desired damper force and the command signal (voltage). This force voltage relationship is especially required for the structural vibration control design and simulation using MR dampers. This paper focuses on using a neural network (NN) technique to emulate the inverse MR damper model. The output of the neural network can be used to command the MR damper for generating desired forces. Numerical simulations are also presented to illustrate the effectiveness of this inverse model in semi active vibration control using MR dampers. 展开更多
关键词 magnetorhelogical damper neural networks optimal control inverse dynamics
在线阅读 下载PDF
Inertia Match of a 3-RRR Reconfigurable Planar Parallel Manipulator 被引量:7
9
作者 SHAO Zhufeng TANG Xiaoqiang CHEN Xu WANG Liping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期791-799,共9页
Inertia match of the parallel manipulator means the ratio of the inertial load of the parallel manipulator converted to each actuator shaft and the moment of inertia of the actuator is kept within a reasonable range. ... Inertia match of the parallel manipulator means the ratio of the inertial load of the parallel manipulator converted to each actuator shaft and the moment of inertia of the actuator is kept within a reasonable range. Currently there are many studies on parallel manipulators, but few mention inertia parameters and inertia match of parallel manipulators. This paper focuses on the inertia characteristics of the 3-RRR reconfigurable planar parallel manipulator. On the basis of the inverse dynamic formulations deduced with the principle of virtual work, the inertia matrix of the 3-RRR planar parallel manipulator in the actuator space is obtained in algebraic form. Then, by unifying the dimension and averaging diagonal elements of the inertia matrix, the equivalent inertia of the parallel manipulator, which is the inertial load of the parallel manipulator converted to each actuator shaft, is determined. By transforming the inertia problem of the 3-RRR parallel manipulator into that of the serial multi-bar manipulator, the practicality of the equivalent inertia deduced by inverse dynamics is demonstrated. According to the physical meaning of the inertia equation, the manipulator is divided in to three parts. Further analysis is carried out on the contribution of each part to the equivalent inertia and their distributions in the required workspace, revealing that the passive links cannot ignored in calculating the equivalent inertia of the parallel manipulator. Finally, the inertia match for the 3-RRR reconfigurable parallel manipulator under three configurations is accomplished, and reducers are selected. The equivalent inertia calculation and the inertial match results illustrate that the inertia math is a necessary step to the design of the parallel manipulator, and inertia parameters dramatically affect dynamic performances of parallel manipulators. Besides, the equivalent inertia and inertial match principles, proposed in the paper, can be widely applied in the dynamic analysis and servomotors selecting for the parallel manipulator. 展开更多
关键词 inertia match equivalent inertia inverse dynamics parallel manipulator
在线阅读 下载PDF
Analysis of Human Joint Forces in Standing Posture 被引量:1
10
作者 马超 张明 +2 位作者 张春林 李志香 杨建鑫 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期437-442,共6页
Using the software Anybody Modeling System, a human static-standing musculoskeletal model based on inverse dynamics is presented, which are defined as segments, muscles and joints as dements. Simulation is based on da... Using the software Anybody Modeling System, a human static-standing musculoskeletal model based on inverse dynamics is presented, which are defined as segments, muscles and joints as dements. Simulation is based on data obtained from experiments using motion capture system VICADN and force plate AMTI. In the model AnyBody Modeling System is introduced to help solve the redundancy problem and obtain results of muscle activities, muscle forces and joint forces. From the model, hip and knee joint forces could be analyzed under normal standing posture. Also, activities of the musculus rectus femoris and several other muscles of the lower limbs can be obtained. From the results it could be concluded that stresses at joints are much stronger than theoretical reasoning because of the functions of relevant soft tissues such as muscles, tendons and so on. Results show that joint forces from the simulations are in good conformation with previous experimental researches. And this complicated model would be of use for better understanding human body functions. 展开更多
关键词 joint reaction force inverse dynamics muscle-skeletal model AnyBody Modeling System
在线阅读 下载PDF
Disturbance rejection control based on acceleration projection method for walking robots
11
作者 Xu-yang WANG Zhao-hong XU Tian-sheng LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1531-1538,共8页
This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration pr... This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration projection onto the ZMP (zero moment point)-plane, can ensure the overall dynamic stability of the robot during tracking the pre-computed trajectories. Under normal conditions, i.e., the system is dynamically balanced, a primary inverse dynamics control is utilized. In the case that the system becomes unbalanced due to external disturbances, the acceleration projection control (APC) loop, will be activated to keep the dynamic stability of the walking robot through modifying the input torques. The preliminary experimental results on a robot leg demonstrate that the proposed method can actually make the robot keep a stable motion under unknown external perturbations. 展开更多
关键词 inverse dynamics Disturbance reiection ZMP (zero moment point)-plane Orthogonal projection Walking robot
在线阅读 下载PDF
Exact Computation of Parallel Robot's Generalized Inertia Matrix
12
作者 赵永杰 杨志永 +1 位作者 梅江平 黄田 《Transactions of Tianjin University》 EI CAS 2005年第6期395-399,共5页
According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's g... According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily. 展开更多
关键词 generalized inertia matrix no-gravity static and accelerated states parallel robot inverse dynamics principle of virtual work
在线阅读 下载PDF
Algebraic Method‑Based Point‑to‑Point Trajectory Planning of an Under‑Constrained Cable‑Suspended Parallel Robot with Variable Angle and Height Cable Mast 被引量:12
13
作者 Tao Zhao Bin Zi +1 位作者 Sen Qian Jiahao Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期45-62,共18页
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und... To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated. 展开更多
关键词 Under-constrained cable-suspended parallel robot Variable angle and height cable mast inverse kinematic and dynamic modeling Algebraic method Point-to-point trajectory planning
在线阅读 下载PDF
ONLINE MODEL AND ACTUATOR FAULT TOLERANT CONTROL FOR AUTONOMOUS MOBILE ROBOT 被引量:4
14
作者 SONG Qi JIANG Zhe HAN Jianda 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期29-33,共5页
A novel fault-tolerant adaptive control methodology against the actuator faults is proposed. The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filt... A novel fault-tolerant adaptive control methodology against the actuator faults is proposed. The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated. 展开更多
关键词 Unscented Kalman filter Active model Fault tolerance inverse dynamic control
在线阅读 下载PDF
Dynamic characteristics analysis and flight control design for oblique wing aircraft 被引量:6
15
作者 Wang Lixin Xu Zijian Yue Ting 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1664-1672,共9页
The movement characteristics and control response of oblique wing aircraft(OWA) are highly coupled between the longitudinal and lateral-directional axes and present obvious nonlinearity. Only with the implementation o... The movement characteristics and control response of oblique wing aircraft(OWA) are highly coupled between the longitudinal and lateral-directional axes and present obvious nonlinearity. Only with the implementation of flight control systems can flying qualities be satisfied. This article investigates the dynamic modeling of an OWA and analyzes its dynamic characteristics.Furthermore, a flight control law based on model-reference dynamic inversion is designed and verified. Calculations and simulations show that OWA can be trimmed by rolling a bank angle and deflecting the triaxial control surfaces in a coordinated way. The oblique wing greatly affects longitudinal motion. The short-period mode is highly coupled between longitudinal and lateral motion,and the bank angle also occurs in phugoid mode. However, the effects of an oblique wing on lateral mode shape are relatively small. For inherent control characteristics, symmetric deflection of the horizontal tail will generate not only longitudinal motion but also a large rolling rate. Rolling moment and pitching moment caused by aileron deflection will reinforce motion coupling, but rudder deflection has relatively little effect on longitudinal motion. Closed-loop simulations demonstrate that the flight control law can achieve decoupling control for OWA and guarantee a satisfactory dynamic performance. 展开更多
关键词 Control allocation DECOUPLING Dynamic characteristics Model-reference dynamic inversion Oblique wing aircraft
原文传递
A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model 被引量:9
16
作者 Laiping ZHANG Xinghua CHANG +2 位作者 Rong MA Zhong ZHAO Nianhua WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2577-2591,共15页
A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A techni... A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A technique of dynamic hybrid grids is developed to control the active control surfaces with body morphing,with a technique of parallel unstructured dynamic overlapping grids generating proper moving grids over the deflecting control surfaces(e.g.the afterbody rudders of a missile).For the flow/kinematic coupled problems,the 6 Degree-Of-Freedom(DOF)equations are solved by an explicit or implicit method coupled with the URANS CFD solver.The module of the control law is explicitly coupled into the NVF simulator and then improved by the simulation of the pitching maneuver process of a maneuverable missile model.A nonlinear dynamic inversion method is then implemented to design the control law for the pitching process of the maneuverable missile model.Simulations and analysis of the pitching maneuver process are carried out by the NVF simulator to improve the flight control law.Higher control response performance is obtained by adjusting the gain factors and adding an integrator into the control loop. 展开更多
关键词 Dynamic hybrid grid generation Flight control law Flow/kinematic coupling method Maneuverable missile pitching Nonlinear dynamic inversion Numerical virtual?ight
原文传递
Closed-loop dynamic control allocation for aircraft with multiple actuators 被引量:5
17
作者 Gai Wendong Wang Honglun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期676-686,共11页
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme... A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail. 展开更多
关键词 Canard rotor/wing aircraft Closed-loop control allocation Dynamic inversion Flight control systems Redundant actuators
原文传递
An Integrated Approach to Hypersonic Entry Attitude Control 被引量:5
18
作者 Zhi-Qiang Pu Ru-Yi Yuan +1 位作者 Xiang-Min Tan Jian-Qiang Yi 《International Journal of Automation and computing》 EI CSCD 2014年第1期39-50,共12页
This paper presents an integrated approach based on dynamic inversion(DI)and active disturbance rejection control(ADRC)to the entry attitude control of a generic hypersonic vehicle(GHV).DI is frstly used to cancel the... This paper presents an integrated approach based on dynamic inversion(DI)and active disturbance rejection control(ADRC)to the entry attitude control of a generic hypersonic vehicle(GHV).DI is frstly used to cancel the nonlinearities of the GHV entry model to construct a basic attitude controller.To enhance the control performance and system robustness to inevitable disturbances,ADRC techniques,including the arranged transient process(ATP),nonlinear feedback(NF),and most importantly the extended state observer(ESO),are integrated with the basic DI controller.As one primary task,the stability and estimation error of the second-order nonlinear ESO are analyzed from a brand new perspective:the nonlinear ESO is treated as a specifc form of forced Li′enard system.Abundant qualitative properties of the Li′enard system are utilized to yield comprehensive theorems on nonlinear ESO solution behaviors,such as the boundedness,convergence,and existence of periodic solutions.Phase portraits of ESO estimation error dynamics are given to validate our analysis.At last,three groups of simulations,including comparative simulations with modeling errors,Monte Carlo runs with parametric uncertainties,and a six degrees-of-freedom reference entry trajectory tracking are executed,which demonstrate the superiority of the proposed integrated controller over the basic DI controller. 展开更多
关键词 Hypersonic vehicle attitude control dynamic inversion active disturbance rejection control stability analysis
原文传递
Dynamic analysis, simulation, and control of a 6-DOF IRB-120 robot manipulator using sliding mode control and boundary layer method 被引量:3
19
作者 Mojtaba HADI BARHAGHTALAB Vahid MEIGOLI +2 位作者 Mohammad Reza GOLBAHAR HAGHIGHI Seyyed Ahmad NAYERI Arash EBRAHIMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2219-2244,共26页
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,... Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator. 展开更多
关键词 robot manipulator control IRB-120 robot sliding mode control sliding mode control with boundary layer inverse dynamic control
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部