期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear system compound inverse control method 被引量:1
1
作者 Yan ZHANG Zengqiang CHEN +1 位作者 Peng YANG Zhuzhi YUAN 《控制理论与应用(英文版)》 EI 2005年第3期218-222,共5页
A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse... A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse theory a compound inverse control method is proposed. The controller has also two parts: a linear controller and a nonlinear neural network controller. The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated .based on the Lyapunov theory. Simulation studies have shown that this scheme is simple and has good control accuracy and robustness. 展开更多
关键词 inverse control method Neural networks Nonlinear svstem: Intelligent control
在线阅读 下载PDF
Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control 被引量:16
2
作者 Zhang Yu Chen Jing Shen Lincheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1038-1056,共19页
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits... This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. 展开更多
关键词 Air-to-surface attack Direct method inverse dynamics Motion planning Real time control Receding horizon control Trajectory planning Unmanned combat aerial vehicles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部