This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al film...In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 μm and three peel angles of 90°, 135° and 180° were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interracial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result展开更多
Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal pl...Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal plate is a prerequisite for correct simulation of sheet bulk metal forming processes. Inverse analysis of compression test was introduced here to evaluate the sensitivity of different flow curve models and geometric influence of compression test specimen. Besides, a methodology was proposed to compute plastic anisotropic coefficients of Hill quadratic yield cri- terion, which is based on the ratios of flow curves obtained by inverse analysis of compression tests using specimens cut in six directions on the medium-thick metal plate. The obtained flow curves and anisotropic coefficients were compared with those calculated from tensile tests. Flow curves based on inverse analysis of compression tests cover the curves of the tensile tests well, while the anisotropic coefficients are different, especially for the coefficient relat- ed to the RT45 direction. To estimate the effectiveness of the proposed method, the calculated material properties and those based on the traditional tensile tests were applied in a rim-hole process simulation. The simulation results based on the material properties from inverse analysis of compression tests accorded with the tested properties better.展开更多
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ...Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.展开更多
An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied t...An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
In the present work, inverse thermal analysis of heat conduction is carried out to estimate the in-plane thermal conductivity of composites. Numerical simulations were performed to determine the optimal configuration ...In the present work, inverse thermal analysis of heat conduction is carried out to estimate the in-plane thermal conductivity of composites. Numerical simulations were performed to determine the optimal configuration of the heating system to ensure a unidirectional heat transfer in the composite sample. Composite plates made of unsaturated polyester resin and unidirectional glass fibers were fabricated by injection to validate the methodology. A heating and cooling cycle is applied at the bottom and top surfaces of the sample. The thermal conductivity can be deduced from transient temperature measurements given by thermocouples positioned at three chosen locations along the fibers direction. The inverse analysis algorithm is initiated by solving the direct problem defined by the one-dimensional transient heat conduction equation using a first estimate of thermal conductivity. The integral in time of the square distance between the measured and predicted values is the criterion minimized in the inverse analysis algorithm. Finally, the evolution of the in-plane composite thermal conductivity can be deduced from the experimental results by the rule of mixture.展开更多
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
This paper reviews various inverse analysis models used in steel material design,with a focus on integrating process,microstructure,and properties through advanced machine learning techniques.The study underscores the...This paper reviews various inverse analysis models used in steel material design,with a focus on integrating process,microstructure,and properties through advanced machine learning techniques.The study underscores the importance of establishing comprehensive models that effectively link these elements for enhanced materials engineering.Key models discussed include the convolutional neural network–artificial neural network-coupled model,which employs convolutional neural networks for feature extraction;the Bayesian-optimized generative adversarial network–conditional generative adversarial network model,which generates diverse virtual microstructures;the multi-objective optimization model,which concentrates on process–property relationships;and the microstructure–process parallelization model,which correlates microstructural features with process conditions.Each model is assessed for its strengths and limitations,influencing its practical applicability in material design.The paper concludes by advocating for continued improvements in model accuracy and versatility,with the ultimate goal of enhancing steel properties and expanding the scope of data-driven material development.展开更多
An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, ...An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.展开更多
In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow...In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow tunnel face stability,utilizing a simplified inverse first-order reliability method(FORM).The limit state functions defining tunnel face stability are established for both collapse and blow-out modes of the tunnel face failure,respectively,and the deterministic results of the tunnel face support pressure are obtained through three-dimensional finite element limit analysis(FELA).Because the inverse reliability method can directly capture the design support pressure according to prescribed target reliability index,the computational cost for probabilistic design of tunnel face stability is greatly reduced.By comparison with Monte Carlo simulation results,the accuracy and feasibility of the proposed method are verified.Further,this study presents a series of reliability-based design charts for vividly understanding the limit support pressure on tunnel face in both cohesionless(sandy)soil and cohesive soil stratums,and their optimal support pressure ranges are highlighted.The results show that in the case of sandy soil stratum,the blowout failure of tunnel face is extremely unlikely,whereas the collapse is the only possible failure mode.The parametric study of various geotechnical uncertainties also reveals that ignoring the potential correlation between soil shear strength parameters will lead to over-designed support pressure,and the coefficient of variation of internal friction angle has a greater influence on the tunnel face failure probability than that of the cohesion.展开更多
A new solution to the inverse position analysis of the redundant serial robot is presented.The inverse position analysis problem of the redundant serial robot is transformed into a minimization problem and then the op...A new solution to the inverse position analysis of the redundant serial robot is presented.The inverse position analysis problem of the redundant serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least square problem with the analytic form of a new Jacobi matrix.In this way,the inverse solution of the redundant serial robot can be searched out quickly under the desired precision when the positions of the three non-collinear end effector points are given.The inverse position analysis of the 7R redundant serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.展开更多
The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization pro...The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.展开更多
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio...Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.展开更多
An inverse method for extracting the elastic-plastic properties of metallic thin films from instrumented sharp indentation has been proposed in terms of dimensional analysis and finite element modeling. A wide range o...An inverse method for extracting the elastic-plastic properties of metallic thin films from instrumented sharp indentation has been proposed in terms of dimensional analysis and finite element modeling. A wide range of materials with different elastic modulus, yield strength, and strain-hardening exponent were examined.Similar to the Nix-Gao model for the depth dependence of hardness H,the relationship between elastic modulus E and indentation depth h can be expressed as By combiningthese two formulas, we find that there is a relationship between yield stress and indentation depth h:where σyO is the yield strength associated with the strain-hardening exponent n, the true hardness Ho and the true elastic modulus Eo.is constant, whichis only related to n, and hH and hE are characteristic lengths for hardness and elastic modulus. The results obtained from inverse analysis show that the elastic-plastic properties of thin films can be uniquely extracted from the solution of this relationship when the indentation size effect has to be taken into account.展开更多
This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures"...This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".展开更多
Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respi...Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.展开更多
Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties effici...Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.展开更多
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
基金the Chinese Academy of Sciences(KJCX2-YW-M04)the National Natural Sciences Foundation of China(10432050,10428207,10672163,and 10721202)
文摘In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 μm and three peel angles of 90°, 135° and 180° were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interracial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result
基金Sponsored by National Natural Science Foundation of China(51105250)National Science and Technology Specific Projects of China(2011ZX04016-051)
文摘Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal plate is a prerequisite for correct simulation of sheet bulk metal forming processes. Inverse analysis of compression test was introduced here to evaluate the sensitivity of different flow curve models and geometric influence of compression test specimen. Besides, a methodology was proposed to compute plastic anisotropic coefficients of Hill quadratic yield cri- terion, which is based on the ratios of flow curves obtained by inverse analysis of compression tests using specimens cut in six directions on the medium-thick metal plate. The obtained flow curves and anisotropic coefficients were compared with those calculated from tensile tests. Flow curves based on inverse analysis of compression tests cover the curves of the tensile tests well, while the anisotropic coefficients are different, especially for the coefficient relat- ed to the RT45 direction. To estimate the effectiveness of the proposed method, the calculated material properties and those based on the traditional tensile tests were applied in a rim-hole process simulation. The simulation results based on the material properties from inverse analysis of compression tests accorded with the tested properties better.
基金The research results are part of a project carried out in 1999-2002 and financially supported by the US National Foundation(No.ASF EARO125968)in 2001-2003 and financially supported by the National Natural Science Foundation of China(Nos.40271089)the Major Sci-Tech Research Project of the Ministry of Education.
文摘Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.
基金support from the South China University of Technology for the PhD short-term visiting project。
文摘An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金the National Science and Engineering Research Council of Canada(NSERC)Fonds Quebecois de Recherche sur la Nature et la Technologie(FQRNT)
文摘In the present work, inverse thermal analysis of heat conduction is carried out to estimate the in-plane thermal conductivity of composites. Numerical simulations were performed to determine the optimal configuration of the heating system to ensure a unidirectional heat transfer in the composite sample. Composite plates made of unsaturated polyester resin and unidirectional glass fibers were fabricated by injection to validate the methodology. A heating and cooling cycle is applied at the bottom and top surfaces of the sample. The thermal conductivity can be deduced from transient temperature measurements given by thermocouples positioned at three chosen locations along the fibers direction. The inverse analysis algorithm is initiated by solving the direct problem defined by the one-dimensional transient heat conduction equation using a first estimate of thermal conductivity. The integral in time of the square distance between the measured and predicted values is the criterion minimized in the inverse analysis algorithm. Finally, the evolution of the in-plane composite thermal conductivity can be deduced from the experimental results by the rule of mixture.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金funded by a Grant-in-Aid for Transformative Research Areas 21H05194“Material Creation in Super Field”and 22H01807 from the Japanese Grants-in-Aid for Scientific Research.
文摘This paper reviews various inverse analysis models used in steel material design,with a focus on integrating process,microstructure,and properties through advanced machine learning techniques.The study underscores the importance of establishing comprehensive models that effectively link these elements for enhanced materials engineering.Key models discussed include the convolutional neural network–artificial neural network-coupled model,which employs convolutional neural networks for feature extraction;the Bayesian-optimized generative adversarial network–conditional generative adversarial network model,which generates diverse virtual microstructures;the multi-objective optimization model,which concentrates on process–property relationships;and the microstructure–process parallelization model,which correlates microstructural features with process conditions.Each model is assessed for its strengths and limitations,influencing its practical applicability in material design.The paper concludes by advocating for continued improvements in model accuracy and versatility,with the ultimate goal of enhancing steel properties and expanding the scope of data-driven material development.
文摘An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.
基金supported by the Natural Science Foundation of China[NSFC Grant Nos.51879091,52079045,41772287]support from the Key R&D Project of Zhejiang Province(2021C03159).
文摘In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow tunnel face stability,utilizing a simplified inverse first-order reliability method(FORM).The limit state functions defining tunnel face stability are established for both collapse and blow-out modes of the tunnel face failure,respectively,and the deterministic results of the tunnel face support pressure are obtained through three-dimensional finite element limit analysis(FELA).Because the inverse reliability method can directly capture the design support pressure according to prescribed target reliability index,the computational cost for probabilistic design of tunnel face stability is greatly reduced.By comparison with Monte Carlo simulation results,the accuracy and feasibility of the proposed method are verified.Further,this study presents a series of reliability-based design charts for vividly understanding the limit support pressure on tunnel face in both cohesionless(sandy)soil and cohesive soil stratums,and their optimal support pressure ranges are highlighted.The results show that in the case of sandy soil stratum,the blowout failure of tunnel face is extremely unlikely,whereas the collapse is the only possible failure mode.The parametric study of various geotechnical uncertainties also reveals that ignoring the potential correlation between soil shear strength parameters will lead to over-designed support pressure,and the coefficient of variation of internal friction angle has a greater influence on the tunnel face failure probability than that of the cohesion.
基金the National Natural Science Foundation of China (No.50905102)the China Postdoctoral Science Foundation (No.200801199)the Natural Science Foundation of Guangdong Province (Nos.8351503101000001 and 10151503101000033)
文摘A new solution to the inverse position analysis of the redundant serial robot is presented.The inverse position analysis problem of the redundant serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least square problem with the analytic form of a new Jacobi matrix.In this way,the inverse solution of the redundant serial robot can be searched out quickly under the desired precision when the positions of the three non-collinear end effector points are given.The inverse position analysis of the 7R redundant serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.
基金Funded by National Natural Science Foundation of China (No. 50905102)the Natural Science Foundation of Guangdong Province (Nos. 10151503101000033 and 8351503101000001)the Building Fund for the Academic Innovation Team of Shantou University (No. ITC10003)
文摘The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.
基金Supported by National Natural Science Foundation of China(Grant No.51475211)
文摘Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11102176,11002122,11172258,and 10828205)the Natural Science Foundation of Hunan Province for Innovation Group(Grant No. 09JJ7004)+1 种基金the Key Special Program for Science and Technology of Hunan Province (Grant No.2009FJ1002)the support from the Australian Research Council(Grant No. DP0985450)
文摘An inverse method for extracting the elastic-plastic properties of metallic thin films from instrumented sharp indentation has been proposed in terms of dimensional analysis and finite element modeling. A wide range of materials with different elastic modulus, yield strength, and strain-hardening exponent were examined.Similar to the Nix-Gao model for the depth dependence of hardness H,the relationship between elastic modulus E and indentation depth h can be expressed as By combiningthese two formulas, we find that there is a relationship between yield stress and indentation depth h:where σyO is the yield strength associated with the strain-hardening exponent n, the true hardness Ho and the true elastic modulus Eo.is constant, whichis only related to n, and hH and hE are characteristic lengths for hardness and elastic modulus. The results obtained from inverse analysis show that the elastic-plastic properties of thin films can be uniquely extracted from the solution of this relationship when the indentation size effect has to be taken into account.
文摘This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".
文摘Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.
基金supported by the National Natural Science Foundation of China(Grants No.51879185 and 52179139)the Open Fund of the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(Grant No.2020KSD06).
文摘Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.