The inverse problem in geophysics is to infer the vertical structure from the observed data. The crucial assumption in deriving inversion algorithms obtained for different elementary layer structures. Much of the prev...The inverse problem in geophysics is to infer the vertical structure from the observed data. The crucial assumption in deriving inversion algorithms obtained for different elementary layer structures. Much of the previous work on this problem for the case of plane wave at normal incidence has consisted of deriving a Schrodinger equation from the basic acoustic and stress-strain equations, and then reconstructing the potential appearing in this equation by using the Gelfand-Levitan procedure. We shall be concerned with structures in which the unknown coefficient has jump discontinuities. Here the unknown potential in the corresponding Gelfand-Levitan framework is highly singular, so much so that the theory breaks down. In this paper it is presented an inversion algorithm based on the Riccati equation,which avoids to solve the problem of singularity. The model experiment was conducted in a sewage pool of a factory. The final result of inversion agrecd well with the direct experimental observation.展开更多
In recent years, the anisotropic study has become a hot topic in the field of electromagnetics. Currently, inversion technologies of transient electromagnetic sounding data are mainly based on the case of an isotropic...In recent years, the anisotropic study has become a hot topic in the field of electromagnetics. Currently, inversion technologies of transient electromagnetic sounding data are mainly based on the case of an isotropic medium. However, the actual underground electrical structure tends to be complicated and anisotropic. It is often found that the isotropic inversion technologies do not lead to good results for field transient electromagnetic sounding data. We have developed an algorithm for calculating the transient electromagnetic response in a layered medium with azimuthal anisotropy. An occam inversion algorithm has also been implemented to invert the transient electromagnetic data induced by a grounded horizontal electric dipole in a layered medium with azimuthal anisotropy. Synthetic examples demonstrate the stability and validity of the inversion algorithm. Experimental results show different data for inverting have great influence on the inversion results.展开更多
The distortion of mold plates plays an important role in the formation of surface cracks on continuously cast steel products. To investigate the non-uniform distortion of a mold, a full-scale stress model of the mold ...The distortion of mold plates plays an important role in the formation of surface cracks on continuously cast steel products. To investigate the non-uniform distortion of a mold, a full-scale stress model of the mold was de veloped. An inverse algorithm was applied to calculate the heat flux using the temperatures measured by the thermo- couples buried inside the mold plates. Based on this, a full-scale, finite-element stress model, including four copper plates, a nickel layer and water slots in different depths, was built to determine the complex mechanical behavior of the continuous casting mold used to produce steel slabs. The heat flux calculated by the inverse algorithm was applied to the stress model to analyze the non-uniform mechanical behavior. The results showed that the stress and distortion distributions of the four copper plates were not symmetrical, which reflected the non-uniform distortion behaviors of copper plates, water slots, nickel layer and the corner region of the mold. The gap between the mold and the slab was increased because of the corner distortion, which was very important for the heat transfer of initial solidifying shell, and it may be a major reason for the slow cooling of the slab corner.展开更多
As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elasti...As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.展开更多
Combining the adaptive shrinkage genetic algorithm in the feasible region with the imaging of apparent vertical conductance differential, we have inverted the TEM conductive thin layer. The result of the inversion dem...Combining the adaptive shrinkage genetic algorithm in the feasible region with the imaging of apparent vertical conductance differential, we have inverted the TEM conductive thin layer. The result of the inversion demonstrates that by adaptive shrinkage in the feasible region, the calculation speed accelerates and the calculation precision improves. To a certain extent, in this method we surmount the transient electromagnetic sounding equivalence and reduced equivalence scope. Comparison of the inverted result with the forward curve clearly shows that we can image the conductive thin layer.展开更多
In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to ...In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.展开更多
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f...A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this展开更多
本文提出一种用于层状介质中重力、地震资料联合反演层速度、层密度及弯曲界面深度的迭代算法。该方法通过引入加权最小平方目标泛函,将层状介质中的重力、地震资料联合反演问题转化成具体的优化问题。为了得到反问题的最优解,文中系统...本文提出一种用于层状介质中重力、地震资料联合反演层速度、层密度及弯曲界面深度的迭代算法。该方法通过引入加权最小平方目标泛函,将层状介质中的重力、地震资料联合反演问题转化成具体的优化问题。为了得到反问题的最优解,文中系统地研究了层状介质中双摄动处理技术,以及层状介质中波场摄动的一阶 Born 近似解与理论重力异常摄动解。并应用 Tarantola 的反演理论,导出了梯度算子的计算公式。然后应用最速下降法给出了求取最优解的具体算法,得到了一种类似于地震偏移与空间更投影的迭代反演方法。对理论模型进行重力、地震联合反演的结果表明,该方法不仅可碱少未知参数的个数,提高反演的收敛速度,而且可减少反演的不适定性,不失为一种可行的多参数反演方法。展开更多
文摘The inverse problem in geophysics is to infer the vertical structure from the observed data. The crucial assumption in deriving inversion algorithms obtained for different elementary layer structures. Much of the previous work on this problem for the case of plane wave at normal incidence has consisted of deriving a Schrodinger equation from the basic acoustic and stress-strain equations, and then reconstructing the potential appearing in this equation by using the Gelfand-Levitan procedure. We shall be concerned with structures in which the unknown coefficient has jump discontinuities. Here the unknown potential in the corresponding Gelfand-Levitan framework is highly singular, so much so that the theory breaks down. In this paper it is presented an inversion algorithm based on the Riccati equation,which avoids to solve the problem of singularity. The model experiment was conducted in a sewage pool of a factory. The final result of inversion agrecd well with the direct experimental observation.
文摘In recent years, the anisotropic study has become a hot topic in the field of electromagnetics. Currently, inversion technologies of transient electromagnetic sounding data are mainly based on the case of an isotropic medium. However, the actual underground electrical structure tends to be complicated and anisotropic. It is often found that the isotropic inversion technologies do not lead to good results for field transient electromagnetic sounding data. We have developed an algorithm for calculating the transient electromagnetic response in a layered medium with azimuthal anisotropy. An occam inversion algorithm has also been implemented to invert the transient electromagnetic data induced by a grounded horizontal electric dipole in a layered medium with azimuthal anisotropy. Synthetic examples demonstrate the stability and validity of the inversion algorithm. Experimental results show different data for inverting have great influence on the inversion results.
基金Item Sponsored by National Natural Science Foundation of China(51474047,51004012)China Postdoctoral Science Foundation(2012M520621,2013T60511)Fundamental Research Funds for the Central Universities of China
文摘The distortion of mold plates plays an important role in the formation of surface cracks on continuously cast steel products. To investigate the non-uniform distortion of a mold, a full-scale stress model of the mold was de veloped. An inverse algorithm was applied to calculate the heat flux using the temperatures measured by the thermo- couples buried inside the mold plates. Based on this, a full-scale, finite-element stress model, including four copper plates, a nickel layer and water slots in different depths, was built to determine the complex mechanical behavior of the continuous casting mold used to produce steel slabs. The heat flux calculated by the inverse algorithm was applied to the stress model to analyze the non-uniform mechanical behavior. The results showed that the stress and distortion distributions of the four copper plates were not symmetrical, which reflected the non-uniform distortion behaviors of copper plates, water slots, nickel layer and the corner region of the mold. The gap between the mold and the slab was increased because of the corner distortion, which was very important for the heat transfer of initial solidifying shell, and it may be a major reason for the slow cooling of the slab corner.
基金Project (No. 10372058) supported by the National Natural Science Foundation of China
文摘As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.
文摘Combining the adaptive shrinkage genetic algorithm in the feasible region with the imaging of apparent vertical conductance differential, we have inverted the TEM conductive thin layer. The result of the inversion demonstrates that by adaptive shrinkage in the feasible region, the calculation speed accelerates and the calculation precision improves. To a certain extent, in this method we surmount the transient electromagnetic sounding equivalence and reduced equivalence scope. Comparison of the inverted result with the forward curve clearly shows that we can image the conductive thin layer.
文摘In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.
文摘A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this
文摘本文提出一种用于层状介质中重力、地震资料联合反演层速度、层密度及弯曲界面深度的迭代算法。该方法通过引入加权最小平方目标泛函,将层状介质中的重力、地震资料联合反演问题转化成具体的优化问题。为了得到反问题的最优解,文中系统地研究了层状介质中双摄动处理技术,以及层状介质中波场摄动的一阶 Born 近似解与理论重力异常摄动解。并应用 Tarantola 的反演理论,导出了梯度算子的计算公式。然后应用最速下降法给出了求取最优解的具体算法,得到了一种类似于地震偏移与空间更投影的迭代反演方法。对理论模型进行重力、地震联合反演的结果表明,该方法不仅可碱少未知参数的个数,提高反演的收敛速度,而且可减少反演的不适定性,不失为一种可行的多参数反演方法。