An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by ...An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (l q-1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions.展开更多
New function spaces,which generalize the classical Dirichlet space,BMOA or also the recently defined Qpspace,are introduced on Riemann surfaces.Except inclusions between these generalized spaces it is shown that the c...New function spaces,which generalize the classical Dirichlet space,BMOA or also the recently defined Qpspace,are introduced on Riemann surfaces.Except inclusions between these generalized spaces it is shown that the capacity Bloch space is a maximal space for them.展开更多
The author considers the asymptotic behavior of solutions of a class of ordinary dmerentialequations x = F(x) in the nonnegative orthant R7. Suppose that F(o) = o, Fi(x1,..., xn) isnondecreasing in xk for all k≠ i an...The author considers the asymptotic behavior of solutions of a class of ordinary dmerentialequations x = F(x) in the nonnegative orthant R7. Suppose that F(o) = o, Fi(x1,..., xn) isnondecreasing in xk for all k≠ i and that F possesses an order-increasing invarian function.Then it is shown that every bounded solution to such a system converges to a single equilibrium.展开更多
This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging...This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging to the path invariant algebraic difference form of a non-linear growth function, were also tested and compared. These models can be used to predict future basal area as a function of stand variables like dominant height and stem number per hectare and are necessary for reviewing different silvicultural treatment options. Data from 22 sample plots were used for modelling. An all possible growth intervals data structure was used. Both, qualitative and quantitative criteria were used to compare alternative models. The Akaike's information criteria differ- ence statistic was used to analyze the predictive ability of the models. Results show that the model proposed by Hui and Gadow performed best and hence this model is recommended for use in predicting basal area development in 12 undulata plantations in the study area. The data used were not from thinned stands, and hence the models may be less accurate when used for predictions when natural mortality is very significant.展开更多
In [2-4], symplectic schemes of arbitrary order are constructed by generating functions. However the construction of generating functions is dependent on the chosen coordinates. One would like to know that under what ...In [2-4], symplectic schemes of arbitrary order are constructed by generating functions. However the construction of generating functions is dependent on the chosen coordinates. One would like to know that under what circumstance the construction of generating functions will be independent of the coordinates. The generating functions are deeply associated with the conservation laws, so it is important to study their properties and computations. This paper will begin with the study of Darboux transformation, then in section 2, a normalization Darboux transformation will be defined naturally. Every symplectic scheme which is constructed from Darboux transformation and compatible with the Hamiltonian equation will satisfy this normalization condition. In section 3, we will study transformation properties of generator maps and generating functions. Section 4 will be devoted to the study of the relationship between the invariance of generating functions and the generator maps. In section 5, formal symplectic erengy of symplectic schemes are presented.展开更多
In order to study the boundedness of some operators in general function spaces which include Lorentz spaces and Orlicz spaces as special examples,Lorentz introduced a new space called rearrangement invariant Banach fu...In order to study the boundedness of some operators in general function spaces which include Lorentz spaces and Orlicz spaces as special examples,Lorentz introduced a new space called rearrangement invariant Banach function spaces,denoted by RIBFS.It is shown in this paper that variation operators of singular integrals and their commutators are bounded on RIBFS whenever the kernels satisfy the L~r-H?rmander conditions.Moreover,we obtain some quantitative weighted bounds in the quasi-Banach spaces and modular inequalities for above variation operators and their commutators.展开更多
Abstract We define the motivic Milnor fiber of cyclic L∞-algebras of dimension three using the method of Denef and Loeser of motivic integration. It is proved by Nicaise and Sebag that the topo- logical Euler charact...Abstract We define the motivic Milnor fiber of cyclic L∞-algebras of dimension three using the method of Denef and Loeser of motivic integration. It is proved by Nicaise and Sebag that the topo- logical Euler characteristic of the motivic Milnor fiber is equal to the Euler characteristic of the étale cohomology of the analytic Milnor fiber. We prove that the value of Behrend function on the germ moduli space determined by a cyclic L∞-algebra L is equal to the Euler characteristic of the analytic Milnor fiber. Thus we prove that the Behrend function depends only on the formal neighborhood of the moduli space.展开更多
The authors establish the Hilbertian invariance principle for the empirical process of astationary Markov process, by extending the forward-backward martingale decomposition ofLyons-Meyer-Zheng to the Hilbert space va...The authors establish the Hilbertian invariance principle for the empirical process of astationary Markov process, by extending the forward-backward martingale decomposition ofLyons-Meyer-Zheng to the Hilbert space valued additive functionals associated with generalnon-reversible Markov processes.展开更多
基金Supported by the National Natural Science Foundations of China under Grant Nos.11435005,11471004,11175092,and 11205092Shanghai Knowledge Service Platform for Trustworthy Internet of Things No.ZF1213K.C.Wong Magna Fund in Ningbo University
文摘An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (l q-1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions.
基金supported by National Natural Science Foundation of China(Grant No.11071083)
文摘New function spaces,which generalize the classical Dirichlet space,BMOA or also the recently defined Qpspace,are introduced on Riemann surfaces.Except inclusions between these generalized spaces it is shown that the capacity Bloch space is a maximal space for them.
文摘The author considers the asymptotic behavior of solutions of a class of ordinary dmerentialequations x = F(x) in the nonnegative orthant R7. Suppose that F(o) = o, Fi(x1,..., xn) isnondecreasing in xk for all k≠ i and that F possesses an order-increasing invarian function.Then it is shown that every bounded solution to such a system converges to a single equilibrium.
基金The research was supported by NSFC(11720101003 and 11801347)key projects of fundamental research in universities of Guangdong Province(2018KZDXM034).
文摘This article traces several prominent trends in the development of Mobius invariant function spaces Q_(K)with emphasis on theoretic aspects.
基金the State Forest Department,Rajasthan for providing financial support for conducting this study and to their officials for rendering necessary assistance during fieldwork
文摘This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging to the path invariant algebraic difference form of a non-linear growth function, were also tested and compared. These models can be used to predict future basal area as a function of stand variables like dominant height and stem number per hectare and are necessary for reviewing different silvicultural treatment options. Data from 22 sample plots were used for modelling. An all possible growth intervals data structure was used. Both, qualitative and quantitative criteria were used to compare alternative models. The Akaike's information criteria differ- ence statistic was used to analyze the predictive ability of the models. Results show that the model proposed by Hui and Gadow performed best and hence this model is recommended for use in predicting basal area development in 12 undulata plantations in the study area. The data used were not from thinned stands, and hence the models may be less accurate when used for predictions when natural mortality is very significant.
文摘In [2-4], symplectic schemes of arbitrary order are constructed by generating functions. However the construction of generating functions is dependent on the chosen coordinates. One would like to know that under what circumstance the construction of generating functions will be independent of the coordinates. The generating functions are deeply associated with the conservation laws, so it is important to study their properties and computations. This paper will begin with the study of Darboux transformation, then in section 2, a normalization Darboux transformation will be defined naturally. Every symplectic scheme which is constructed from Darboux transformation and compatible with the Hamiltonian equation will satisfy this normalization condition. In section 3, we will study transformation properties of generator maps and generating functions. Section 4 will be devoted to the study of the relationship between the invariance of generating functions and the generator maps. In section 5, formal symplectic erengy of symplectic schemes are presented.
基金supported partly by the National Key R&D Program of China (Grant No.2020YFA0712900)NNSF of China (Grant Nos. 11871101, 12271041)。
文摘In order to study the boundedness of some operators in general function spaces which include Lorentz spaces and Orlicz spaces as special examples,Lorentz introduced a new space called rearrangement invariant Banach function spaces,denoted by RIBFS.It is shown in this paper that variation operators of singular integrals and their commutators are bounded on RIBFS whenever the kernels satisfy the L~r-H?rmander conditions.Moreover,we obtain some quantitative weighted bounds in the quasi-Banach spaces and modular inequalities for above variation operators and their commutators.
基金Supported by Simon Foundation Collaboration Grants(Grant No.311837)
文摘Abstract We define the motivic Milnor fiber of cyclic L∞-algebras of dimension three using the method of Denef and Loeser of motivic integration. It is proved by Nicaise and Sebag that the topo- logical Euler characteristic of the motivic Milnor fiber is equal to the Euler characteristic of the étale cohomology of the analytic Milnor fiber. We prove that the value of Behrend function on the germ moduli space determined by a cyclic L∞-algebra L is equal to the Euler characteristic of the analytic Milnor fiber. Thus we prove that the Behrend function depends only on the formal neighborhood of the moduli space.
文摘The authors establish the Hilbertian invariance principle for the empirical process of astationary Markov process, by extending the forward-backward martingale decomposition ofLyons-Meyer-Zheng to the Hilbert space valued additive functionals associated with generalnon-reversible Markov processes.