Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece...Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.展开更多
In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are...In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.展开更多
Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of th...Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear progr...The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.展开更多
在区间直觉模糊集(Interval-valued intuitionistic fuzzy set,IVIFS)的框架内,重点研究了属性权重在一定约束条件下和属性权重完全未知的多属性群决策问题.首先利用区间直觉模糊集成算子获得方案在属性上的综合区间直觉模糊决策矩阵,...在区间直觉模糊集(Interval-valued intuitionistic fuzzy set,IVIFS)的框架内,重点研究了属性权重在一定约束条件下和属性权重完全未知的多属性群决策问题.首先利用区间直觉模糊集成算子获得方案在属性上的综合区间直觉模糊决策矩阵,进一步依据逼近理想解排序法(Technique for order preference by similarity to an ideal solution,TOPSIS)的思想计算候选方案和理想方案的加权距离,最后确定方案排序.其中针对属性权重在一定约束条件下的决策问题,提出了基于区间直觉模糊集精确度函数的线性规划方法,用以解决属性权重求解问题.针对属性权重完全未知的决策问题,首先定义了区间直觉模糊熵,其次通过熵衡量每一属性所含的信息量来求解属性权重.实验结果验证了决策方法的有效性和可行性.展开更多
文摘Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.
基金Supported by the National Natural Science Foundation of China(71471140,71171150,71103135)
文摘In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.
文摘Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
文摘The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.
文摘在区间直觉模糊集(Interval-valued intuitionistic fuzzy set,IVIFS)的框架内,重点研究了属性权重在一定约束条件下和属性权重完全未知的多属性群决策问题.首先利用区间直觉模糊集成算子获得方案在属性上的综合区间直觉模糊决策矩阵,进一步依据逼近理想解排序法(Technique for order preference by similarity to an ideal solution,TOPSIS)的思想计算候选方案和理想方案的加权距离,最后确定方案排序.其中针对属性权重在一定约束条件下的决策问题,提出了基于区间直觉模糊集精确度函数的线性规划方法,用以解决属性权重求解问题.针对属性权重完全未知的决策问题,首先定义了区间直觉模糊熵,其次通过熵衡量每一属性所含的信息量来求解属性权重.实验结果验证了决策方法的有效性和可行性.