The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investi...The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.展开更多
By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomo...By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomorphic ferrite (AF) and ferrite side plate (FSP) microstructures grew more rapidly with the temperature decreasing from 800 to 650 ℃, and the IAF microstructure was dominant within austenite grain with further cooling to 600 ℃. The diffusion bonding experiment and the effect of C, Mn and Si concentrations on the Ao3 temperature by thermodynam- ic calculation confirm that Ti2O3 itself absorbs neighboring Mn atoms to form Mn-depleted zone (MDZ), which pro- motes the nucleation of IAF microstructure effectively. High temperature holding tests indicate that the nucleation potential of IAF microstructure was lowered in the Ti-killed C-Mn steel when it was treated at high temperature (1250 ℃ ) for a longer time, which is attributed to the saturated absorption degree of Mn atoms by titanium oxide.展开更多
Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron ...Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.展开更多
Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly com...Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.展开更多
High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron micr...High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).SEM observation shows that the formation of intragranular ferrite(IGF)structure is induced by fine inclusions.TEM selected area diffraction(SAD)patterns and elemental distribution analysis indicate that these inclusions are mainly Ti2O3 and MnS.It is also found that Ti2O3 may act as nucleus in the formation of MnS during solidification process.Raman spectroscopic analysis demonstrates the presence of another phase,MnTiO3,which could be formed through entrapment of Mn by Ti2O3.It is believed that the formation of Mn-depleted region in the inclusions and thus the formation of MnTiO3 phase will increase the Mn pickup from matrix and promote the formation of IGF during solidification of molten steel.展开更多
The behaviour of the particles in solidification inter face front was studied, and the equation of the critical interface velocity which related to the supercooling and the volume fraction of particles in the melt was...The behaviour of the particles in solidification inter face front was studied, and the equation of the critical interface velocity which related to the supercooling and the volume fraction of particles in the melt was obtained. By the mean time, the two solidification mechanisms of aluminium matrix intragranular composites was put forward.展开更多
To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal t...To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal that contrary to the valueof flow stress,the scatter of flow stress decreases with the increase of thickness-to-grain diameter(T/d)ratio.Microhardnessevaluation results show that each grain owns unique deformation behavior and randomly distributes in each specimen.The specimenwith less number of grains would be more likely to form an easy deformation zone and produce the concentration of plasticdeformation.Based on the experiment results,a size-dependent model considering the effects of grain size,geometry size,and thedeformation behavior of each grain was developed.And the effectiveness and practicability of the size-dependent model wereverified by experimental results.展开更多
Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due ...Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.展开更多
For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubin...For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubing manufacture process.Results show that with decrease of the isothermal temperature in range of 600℃ down to 450℃,not only the morphology of IGF changed from equiaxed to acicular,but also the equiaxed IGF and the acicular IGF were refined.More importantly,it is found that the amount of equiaxed ferrite increased significantly in the thermomechanical process sample water quenched from 550℃ after 800℃ deformation than that in the isothermally treated sample at 550℃ sample without hot deformation.It implies that appropriate controlled deformation with controlled cooling can significantly promote equiaxed IGF formation,and not solely rely on nucleation mechanisms related with inclusions.Hot deformation of austenite without dynamic and complete static recrystallization causes high energy regions,therefore further promotes the nucleation potency of IGF.展开更多
The formation of intragranular ferrite at inclusions was analyzed by SEM-EDX in a vanadium microalloyed steel with an excess amount of sulfur. The precipitation of MnS at aluminum oxides may result in Mn depletion, wh...The formation of intragranular ferrite at inclusions was analyzed by SEM-EDX in a vanadium microalloyed steel with an excess amount of sulfur. The precipitation of MnS at aluminum oxides may result in Mn depletion, which, in turn, promotes the formation of intragranular ferrite. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite is nearly equiaxed whereas it is plate-like at lower temperatures.展开更多
In the as-cast Ti-55 alloy, the intragranular rare earth-rich phase particles are about 1. 0~14 μm in diameter, elliptical, and rich in Nd, Sn, and O. The contents of Nd and Sn on the grain boundaries are higher th...In the as-cast Ti-55 alloy, the intragranular rare earth-rich phase particles are about 1. 0~14 μm in diameter, elliptical, and rich in Nd, Sn, and O. The contents of Nd and Sn on the grain boundaries are higher than those at other sites. The intragranular phases grow preferably at the region on the grain boundaries, which causes the formation of the elliptical morphology of the intragranular phases.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
The effect of sintering process and ZrO2 contents on formation of intragranular ZrO2 in Al2O3 matrix was investigated with α-Al2O3 micro-powders and ZrO2 nano-powders as original materials. It is found that the secon...The effect of sintering process and ZrO2 contents on formation of intragranular ZrO2 in Al2O3 matrix was investigated with α-Al2O3 micro-powders and ZrO2 nano-powders as original materials. It is found that the second-phase particles coalesce with the growth of matrix grains during sintering. The process conditions that benefit the growth of matrix grains benefit the formation of intragrains. The formation procedure of intragrains could be described as follows. At first, the particles are driven to agglomerate during densification of the matrix . Some particles move along with the migration of the matrix grain boundaries and tend to further gather, then become intergrains. Those gripped between the matrix grain boundaries become intragrains during the growth of matrix grains.展开更多
The 7XXX aluminum alloys having a microstructure with precipitate free zones (PFZ) nearby the grain boundary, have received a great deal of attention due to their high strength, light mass, and yet poor fracture tough...The 7XXX aluminum alloys having a microstructure with precipitate free zones (PFZ) nearby the grain boundary, have received a great deal of attention due to their high strength, light mass, and yet poor fracture toughness. Experimental investigation into the effect of microstructure on the ductility was well established and comprehensive in the literature. A micromechanical model using a unit cell including some voids and relevant microstructural features was created. The competition between intergranular and intragranular fracture was investigated by comparing the void growth velocity between PFZ and matrix. The effects of void aspect ratio, relative PFZ volume, orientation of PFZ on the ductility of 7XXX aluminum alloys were analyzed. The results show that the model can explain the effect of microstructure on the competition between intergranular and intragranular fracture.展开更多
High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation,safe infrastructure,and advanced energy applications.However,these steels generally suffer from limited ductility owing...High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation,safe infrastructure,and advanced energy applications.However,these steels generally suffer from limited ductility owing to the formation of coarse B2 particles at grain boundaries.In this study,we proposed a strategy to introduce copious intragranular B2 nanoprecipitates within fully-recrystallized fine austenitic grains in a Fe-26Mn-11Al-0.9C-5Ni ultralight steel by a simple cold rolling and annealing process.Compared with steel where B2 particles are mainly distributed at grain boundaries,the yield strength and ultimate tensile strength of this steel increased from 768 MPa and 1100 MPa to 954 MPa and 1337 MPa,respectively,whereas the total elongation increased from 38%to 50%.The higher yield strength was primarily due to the synergistic strengthening effect of intragranular B2 nanoprecipitates and grain refinement.The excellent ductility and sustained work hardening were mainly attributed to the strong dislocation storage capability mediated by the intragranular B2 nanoprecipitates and the greater dynamic slip band refinement strengthening effect.Hence,the achievement of copious intragranular B2 nanoprecipitation in fully recrystallized ultralight steel offers an effective pathway for developing lightweight materials with high strength and large ductility.展开更多
Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,...Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,a combination of molecular level mixing(MLM),segment ball milling(SBM),and in-situ solid-phase reaction was employed to fabricate Cu matrix composites(TiC-CNT/Cu)reinforced with TiC decorated CNT(TiC@CNT)and in-situ nanoscale TiC particles.The HRTEM results revealed the epitaxial growth of interfacial TiC on the surface of CNT(i.e.,CNT(0002)//TiC(200),and the formation of a semi-coherent interface between TiC and Cu matrix,which can effectively enhance the interfacial bonding strength and optimize load transfer efficiency of CNT.The independent in-situ TiC nanoparticles got into the grain interior through grain boundary migration,thereby significantly enhancing both strain hardening capacity and strength of the composite by fully utilizing the Orowan strengthening mechanism.Moreover,the enhanced bonding strength of the interface can also effectively suppress crack initiation and propagation,thereby improving the fracture toughness of the composite.The TiC-CNT/Cu composite with 1.2 vol.%CNT exhibited a tensile strength of 372 MPa,achieving a super high strengthening efficiency of 270,while simultaneously maintaining a remarkable ductility of 21.2%.Furthermore,the impact toughness of the TiC-CNT/Cu composite exhibited a significant enhancement of 70.7%compared to that of the CNT/Cu composite,reaching an impressive value of 251 kJ/m^(2),thereby demonstrating exceptional fracture toughness.Fully exploiting the synergistic strengthening effect of different nanophases can be an effective way to improve the comprehensive properties of MMCs.展开更多
Si2N2O/Si3N4 nanocomposites were fabricated by liquid phase sintering of amorphous nano-sized silicon nitride powders.The intragranular microstructure was observed and researched.Intragranular microstructure's β-...Si2N2O/Si3N4 nanocomposites were fabricated by liquid phase sintering of amorphous nano-sized silicon nitride powders.The intragranular microstructure was observed and researched.Intragranular microstructure's β-Si3N4 was formed in Si2N2O matrix at the sintering temperature higher than 1650°C.It was discovered that intragranular microstructure could also disappear by transformation during high temperature annealing.Two possible mechanisms of the disappearance of intragranular microstructure were given.The effect of intragranular microstructure on main mechanical properties was also investigated.展开更多
文摘The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.
文摘By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomorphic ferrite (AF) and ferrite side plate (FSP) microstructures grew more rapidly with the temperature decreasing from 800 to 650 ℃, and the IAF microstructure was dominant within austenite grain with further cooling to 600 ℃. The diffusion bonding experiment and the effect of C, Mn and Si concentrations on the Ao3 temperature by thermodynam- ic calculation confirm that Ti2O3 itself absorbs neighboring Mn atoms to form Mn-depleted zone (MDZ), which pro- motes the nucleation of IAF microstructure effectively. High temperature holding tests indicate that the nucleation potential of IAF microstructure was lowered in the Ti-killed C-Mn steel when it was treated at high temperature (1250 ℃ ) for a longer time, which is attributed to the saturated absorption degree of Mn atoms by titanium oxide.
文摘Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.
基金the Nationual Natural Science Foundation of China(No.50471107).
文摘Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.
基金Item Sponsored by Provincial Natural Science Foundation of Hubei Province of China(2006ABD006)Excellent Young Scientific and Technological Innovation Team Scheme of Hubei Universities of China(T200609)
文摘High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).SEM observation shows that the formation of intragranular ferrite(IGF)structure is induced by fine inclusions.TEM selected area diffraction(SAD)patterns and elemental distribution analysis indicate that these inclusions are mainly Ti2O3 and MnS.It is also found that Ti2O3 may act as nucleus in the formation of MnS during solidification process.Raman spectroscopic analysis demonstrates the presence of another phase,MnTiO3,which could be formed through entrapment of Mn by Ti2O3.It is believed that the formation of Mn-depleted region in the inclusions and thus the formation of MnTiO3 phase will increase the Mn pickup from matrix and promote the formation of IGF during solidification of molten steel.
文摘The behaviour of the particles in solidification inter face front was studied, and the equation of the critical interface velocity which related to the supercooling and the volume fraction of particles in the melt was obtained. By the mean time, the two solidification mechanisms of aluminium matrix intragranular composites was put forward.
文摘To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal that contrary to the valueof flow stress,the scatter of flow stress decreases with the increase of thickness-to-grain diameter(T/d)ratio.Microhardnessevaluation results show that each grain owns unique deformation behavior and randomly distributes in each specimen.The specimenwith less number of grains would be more likely to form an easy deformation zone and produce the concentration of plasticdeformation.Based on the experiment results,a size-dependent model considering the effects of grain size,geometry size,and thedeformation behavior of each grain was developed.And the effectiveness and practicability of the size-dependent model wereverified by experimental results.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20141407)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.
基金support from Chinese National Nature Science Fund (Project No. 50271009 and No. 51071019)the Vanadium International Technical Committee (VANITEC) for their financial support
文摘For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubing manufacture process.Results show that with decrease of the isothermal temperature in range of 600℃ down to 450℃,not only the morphology of IGF changed from equiaxed to acicular,but also the equiaxed IGF and the acicular IGF were refined.More importantly,it is found that the amount of equiaxed ferrite increased significantly in the thermomechanical process sample water quenched from 550℃ after 800℃ deformation than that in the isothermally treated sample at 550℃ sample without hot deformation.It implies that appropriate controlled deformation with controlled cooling can significantly promote equiaxed IGF formation,and not solely rely on nucleation mechanisms related with inclusions.Hot deformation of austenite without dynamic and complete static recrystallization causes high energy regions,therefore further promotes the nucleation potency of IGF.
基金This project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Education Ministry of China and by the Scientific Research Fund of the Education Bureau of Hubei Province, China (No.2004Q001).
文摘The formation of intragranular ferrite at inclusions was analyzed by SEM-EDX in a vanadium microalloyed steel with an excess amount of sulfur. The precipitation of MnS at aluminum oxides may result in Mn depletion, which, in turn, promotes the formation of intragranular ferrite. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite is nearly equiaxed whereas it is plate-like at lower temperatures.
文摘In the as-cast Ti-55 alloy, the intragranular rare earth-rich phase particles are about 1. 0~14 μm in diameter, elliptical, and rich in Nd, Sn, and O. The contents of Nd and Sn on the grain boundaries are higher than those at other sites. The intragranular phases grow preferably at the region on the grain boundaries, which causes the formation of the elliptical morphology of the intragranular phases.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
文摘The effect of sintering process and ZrO2 contents on formation of intragranular ZrO2 in Al2O3 matrix was investigated with α-Al2O3 micro-powders and ZrO2 nano-powders as original materials. It is found that the second-phase particles coalesce with the growth of matrix grains during sintering. The process conditions that benefit the growth of matrix grains benefit the formation of intragrains. The formation procedure of intragrains could be described as follows. At first, the particles are driven to agglomerate during densification of the matrix . Some particles move along with the migration of the matrix grain boundaries and tend to further gather, then become intergrains. Those gripped between the matrix grain boundaries become intragrains during the growth of matrix grains.
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The 7XXX aluminum alloys having a microstructure with precipitate free zones (PFZ) nearby the grain boundary, have received a great deal of attention due to their high strength, light mass, and yet poor fracture toughness. Experimental investigation into the effect of microstructure on the ductility was well established and comprehensive in the literature. A micromechanical model using a unit cell including some voids and relevant microstructural features was created. The competition between intergranular and intragranular fracture was investigated by comparing the void growth velocity between PFZ and matrix. The effects of void aspect ratio, relative PFZ volume, orientation of PFZ on the ductility of 7XXX aluminum alloys were analyzed. The results show that the model can explain the effect of microstructure on the competition between intergranular and intragranular fracture.
基金financial support from the Xiongan Science and Technology Innovation Talent Project of MOST,China(No.2022XACX0500)the State Key Research and Development Program of MOST,China(No.2021YFB3702400).
文摘High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation,safe infrastructure,and advanced energy applications.However,these steels generally suffer from limited ductility owing to the formation of coarse B2 particles at grain boundaries.In this study,we proposed a strategy to introduce copious intragranular B2 nanoprecipitates within fully-recrystallized fine austenitic grains in a Fe-26Mn-11Al-0.9C-5Ni ultralight steel by a simple cold rolling and annealing process.Compared with steel where B2 particles are mainly distributed at grain boundaries,the yield strength and ultimate tensile strength of this steel increased from 768 MPa and 1100 MPa to 954 MPa and 1337 MPa,respectively,whereas the total elongation increased from 38%to 50%.The higher yield strength was primarily due to the synergistic strengthening effect of intragranular B2 nanoprecipitates and grain refinement.The excellent ductility and sustained work hardening were mainly attributed to the strong dislocation storage capability mediated by the intragranular B2 nanoprecipitates and the greater dynamic slip band refinement strengthening effect.Hence,the achievement of copious intragranular B2 nanoprecipitation in fully recrystallized ultralight steel offers an effective pathway for developing lightweight materials with high strength and large ductility.
基金financially supported by the National Natural Science Foundation of China(No.52371136)the Yunnan Provincial Science and Technology Department(No.202202AG050004).
文摘Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,a combination of molecular level mixing(MLM),segment ball milling(SBM),and in-situ solid-phase reaction was employed to fabricate Cu matrix composites(TiC-CNT/Cu)reinforced with TiC decorated CNT(TiC@CNT)and in-situ nanoscale TiC particles.The HRTEM results revealed the epitaxial growth of interfacial TiC on the surface of CNT(i.e.,CNT(0002)//TiC(200),and the formation of a semi-coherent interface between TiC and Cu matrix,which can effectively enhance the interfacial bonding strength and optimize load transfer efficiency of CNT.The independent in-situ TiC nanoparticles got into the grain interior through grain boundary migration,thereby significantly enhancing both strain hardening capacity and strength of the composite by fully utilizing the Orowan strengthening mechanism.Moreover,the enhanced bonding strength of the interface can also effectively suppress crack initiation and propagation,thereby improving the fracture toughness of the composite.The TiC-CNT/Cu composite with 1.2 vol.%CNT exhibited a tensile strength of 372 MPa,achieving a super high strengthening efficiency of 270,while simultaneously maintaining a remarkable ductility of 21.2%.Furthermore,the impact toughness of the TiC-CNT/Cu composite exhibited a significant enhancement of 70.7%compared to that of the CNT/Cu composite,reaching an impressive value of 251 kJ/m^(2),thereby demonstrating exceptional fracture toughness.Fully exploiting the synergistic strengthening effect of different nanophases can be an effective way to improve the comprehensive properties of MMCs.
基金supported by National Postdoctoral Foundation of China (Grant No.20060400787)Science Foundation of China (Grant No.50901066)
文摘Si2N2O/Si3N4 nanocomposites were fabricated by liquid phase sintering of amorphous nano-sized silicon nitride powders.The intragranular microstructure was observed and researched.Intragranular microstructure's β-Si3N4 was formed in Si2N2O matrix at the sintering temperature higher than 1650°C.It was discovered that intragranular microstructure could also disappear by transformation during high temperature annealing.Two possible mechanisms of the disappearance of intragranular microstructure were given.The effect of intragranular microstructure on main mechanical properties was also investigated.