As a key technique in hyperspectral image pre-processing,dimensionality reduction has received a lot of attention.However,most of the graph-based dimensionality reduction methods only consider a single structure in th...As a key technique in hyperspectral image pre-processing,dimensionality reduction has received a lot of attention.However,most of the graph-based dimensionality reduction methods only consider a single structure in the data and ignore the interfusion of multiple structures.In this paper,we propose two methods for combining intra-class competition for locally preserved graphs by constructing a new dictionary containing neighbourhood information.These two methods explore local information into the collaborative graph through competing constraints,thus effectively improving the overcrowded distribution of intra-class coefficients in the collaborative graph and enhancing the discriminative power of the algorithm.By classifying four benchmark hyperspectral data,the proposed methods are proved to be superior to several advanced algorithms,even under small-sample-size conditions.展开更多
在大数据时代,数据的类别标签数量激增,对现有的分类方法构成了重大挑战。为解决此问题,利用类别间的相似性,将数据类别标签以层次化方式处理。但现有的类别间相似性度量均使用欧氏距离,由于欧氏距离无法有效处理高维数据,因此,受Tanim...在大数据时代,数据的类别标签数量激增,对现有的分类方法构成了重大挑战。为解决此问题,利用类别间的相似性,将数据类别标签以层次化方式处理。但现有的类别间相似性度量均使用欧氏距离,由于欧氏距离无法有效处理高维数据,因此,受Tanimoto系数启发,提出一种新的类别相似性度量方法,使用Louvain算法构建树结构(TaniVT),考虑数据分布,设计基于类内散度的模糊粗糙分层分类器(fuzzy rough hierarchical classifier based on intra-class divergence,IDFRHC),将所提方法与已有的方法进行比较,通过实验验证了所提方法的有效性。展开更多
人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占...人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。展开更多
基金supported by the National Natural Science Foundation of China(No.41601344)the Fundamental Research Funds for the Central Universities(Nos.300102320107 and 201924)+2 种基金the National Key Research and Development Project(No.2020YFC1512000)in part by the General Projects of Key R&D Programs in Shaanxi Province(No.2020GY-060)Xi’an Science&Technology Project(Nos.2020KJRC0126 and 202018)。
文摘As a key technique in hyperspectral image pre-processing,dimensionality reduction has received a lot of attention.However,most of the graph-based dimensionality reduction methods only consider a single structure in the data and ignore the interfusion of multiple structures.In this paper,we propose two methods for combining intra-class competition for locally preserved graphs by constructing a new dictionary containing neighbourhood information.These two methods explore local information into the collaborative graph through competing constraints,thus effectively improving the overcrowded distribution of intra-class coefficients in the collaborative graph and enhancing the discriminative power of the algorithm.By classifying four benchmark hyperspectral data,the proposed methods are proved to be superior to several advanced algorithms,even under small-sample-size conditions.
文摘在大数据时代,数据的类别标签数量激增,对现有的分类方法构成了重大挑战。为解决此问题,利用类别间的相似性,将数据类别标签以层次化方式处理。但现有的类别间相似性度量均使用欧氏距离,由于欧氏距离无法有效处理高维数据,因此,受Tanimoto系数启发,提出一种新的类别相似性度量方法,使用Louvain算法构建树结构(TaniVT),考虑数据分布,设计基于类内散度的模糊粗糙分层分类器(fuzzy rough hierarchical classifier based on intra-class divergence,IDFRHC),将所提方法与已有的方法进行比较,通过实验验证了所提方法的有效性。
文摘人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。
文摘目的为解决真实环境中由类内差距引起的面部表情识别率低及室内外复杂环境对类内差距较大的面部表情识别难度大等问题,提出一种利用生成对抗网络(generative adversarial network,GAN)识别面部表情的方法。方法在GAN生成对抗的思想下,构建一种IC-GAN(intra-class gap GAN)网络结构,使用卷积组建编码器、解码器对自制混合表情图像进行更深层次的特征提取,使用基于动量的Adam(adaptive moment estimation)优化算法进行网络权重更新,重点针对真实环境面部表情识别过程中的类内差距较大的表情进行识别,使其更好地适应类内差异较大的任务。结果基于Pytorch环境,在自制的面部表情数据集上进行训练,在面部表情验证集上进行测试,并与深度置信网络(deep belief network,DBN)和GoogLeNet网络进行对比实验,最终IC-GAN网络的识别结果比DBN网络和GoogLeNet网络分别提高11%和8.3%。结论实验验证了IC-GAN在类内差距较大的面部表情识别中的精度,降低了面部表情在类内差距较大情况下的误识率,提高了系统鲁棒性,为面部表情的生成工作打下了坚实的基础。