A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r...A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.展开更多
A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work conditi...A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.展开更多
Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error p...Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.展开更多
Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting t...Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.展开更多
Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, sever...Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.展开更多
针对小型水下无人平台等水下设备对近距、高速率、低复杂度水下数据交互需求,设计一种高速率低复杂度水声通信方案。该方案采用PPM(Pulse Position Modulation)调制方式以直接硬件生成四相位时钟同步采样的方式实现低复杂度解调,从而降...针对小型水下无人平台等水下设备对近距、高速率、低复杂度水下数据交互需求,设计一种高速率低复杂度水声通信方案。该方案采用PPM(Pulse Position Modulation)调制方式以直接硬件生成四相位时钟同步采样的方式实现低复杂度解调,从而降低对硬件算力的要求;同时,利用PPM调制中脉冲间隔形成的特点和脉冲信号的快速衰减特性抑制高频水声信道多径干扰,避免采用高复杂度的信道均衡处理。实验室水池实验表明了采用该方案的通信样机在米级距离达到Mbps级传输速率的有效性。展开更多
为解决传统差分混沌移位键控(differential chaotic shift keying,DCSK)系统安全性较差及误码性能受限的问题,提出一种结合脉冲位置调制与动态帧变换技术的DCSK(frame-transform DCSK system based on pulse position modulation,FT-PPM...为解决传统差分混沌移位键控(differential chaotic shift keying,DCSK)系统安全性较差及误码性能受限的问题,提出一种结合脉冲位置调制与动态帧变换技术的DCSK(frame-transform DCSK system based on pulse position modulation,FT-PPM-DCSK)系统,实现安全性与误码性能的协同优化。通过推导系统在加性高斯白噪声(additive white Gaussian noise,AWGN)信道下的误比特率(BER)表达式,基于蒙特卡洛仿真验证其性能。实验结果表明,与基准DCSK系统相比,FT-PPM-DCSK系统提高了误码性能且具有更高的安全性。展开更多
Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Pro...Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.展开更多
基金Project supported by Tsinghua University Initiative Scientific Research Program,China(Grant No.2014z21035)
文摘A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.
文摘A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.
基金Supported by the National Natural Science Foundation of China(No.41074090)Henan Science and Technology Key Project(No.092102210360)+1 种基金Henan Provincial Department of Education Science ang Technology Key Project(No.13A510330)Doctorate Program of Henan Polytechnic University(No.B2009-27)
文摘Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
文摘Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.
文摘Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.
文摘针对小型水下无人平台等水下设备对近距、高速率、低复杂度水下数据交互需求,设计一种高速率低复杂度水声通信方案。该方案采用PPM(Pulse Position Modulation)调制方式以直接硬件生成四相位时钟同步采样的方式实现低复杂度解调,从而降低对硬件算力的要求;同时,利用PPM调制中脉冲间隔形成的特点和脉冲信号的快速衰减特性抑制高频水声信道多径干扰,避免采用高复杂度的信道均衡处理。实验室水池实验表明了采用该方案的通信样机在米级距离达到Mbps级传输速率的有效性。
文摘为解决传统差分混沌移位键控(differential chaotic shift keying,DCSK)系统安全性较差及误码性能受限的问题,提出一种结合脉冲位置调制与动态帧变换技术的DCSK(frame-transform DCSK system based on pulse position modulation,FT-PPM-DCSK)系统,实现安全性与误码性能的协同优化。通过推导系统在加性高斯白噪声(additive white Gaussian noise,AWGN)信道下的误比特率(BER)表达式,基于蒙特卡洛仿真验证其性能。实验结果表明,与基准DCSK系统相比,FT-PPM-DCSK系统提高了误码性能且具有更高的安全性。
基金supported by the National Key Research and Development Program of China(No.2017YFB0403403)the Natural Science Foundation of Guangdong Province(No.2015A030312006).
文摘Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.